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Collision-Free Motion Algorithms for Sensors
Automated Deployment to Enable a Smart

Environmental Sensing-Net
Ting-Yu Lin , Member, IEEE, Kun-Ru Wu , You-Shuo Chen , and Yan-Syun Shen

Abstract— As natural habitats protection has become a global
priority, smart sensing-nets are ever-increasingly needed for
effective environmental observation. In a practical monitor-
ing network, it is critical to deploy sensors with sufficient
automated intelligence and motion flexibility. Recent advances
in robotics and sensors technology have enabled automated
mobile sensors deployment in a smart sensing-net. Existing
deployment algorithms can be employed to calculate adequate
destinations (goals) for sensors to perform respective monitoring
tasks. However, given the calculated goal positions, the problem
of how to actually coordinate a fleet of robots and schedule
moving paths from random initials to reach their goals safely,
without collisions, remains largely unaddressed in the wireless
sensor networking (WSN) literature. In this paper, we investigate
this problem and propose polynomial-time collision-free motion
algorithms based on batched movements to ensure all the mobile
sensors reach their goals successfully without incurring collisions.
We observe that the grouping (batching) strategy is similar
to the coloring procedure in graph theory. By constructing a
conflict graph, we model the collision-free path scheduling as
the well-known k-coloring problem, from which we reduce to
our k-batching problem (determining the minimum number of
required batches for a successful deployment) and prove its
NP completeness. Since the k-batching problem is intractable,
we develop CFMA (collision-free motion algorithm), a simple yet
effective batching (coloring) heuristic mechanism, to approximate
the optimal solution. Performance results show that our motion
algorithms outperform other existing path-scheduling mecha-
nisms by producing 100% sensors reachability (success proba-
bility of goals reaching), time-bounded deployment latency with
low computation complexity, and reduced energy consumption.

Note to Practitioners— This research was originally motivated
by an oceanography project, which studied marine microbes by
sending a team of tiny robots (sensors) randomly scattered on the
ocean floor. For hard-to-access habitats like deserts or oceans,
where manual placement of sensors is costly or impossible, auto-
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matically scheduling robots movements to calculated positions
from random initials is essential for an effective monitoring.
Our contribution is unique in two ways. First, traditional path-
planning research focuses more on independent robots navigating
the environment, whereas we target on the network automation
problem, coordinating a fleet of robots working together to
perform an environmental sensing task. Second, we observe that
existing movement methods are too complicated and energy-
consuming due to the calculation on-the-go nature. To provide a
practical solution, we suggest and design our motion algorithms
from a new perspective: pre-scheduled batched movements. Our
approach requires a central server for grouping (batching) cal-
culations, but can effectively reduce computation complexity and
save significant energy expenditure exerted on resource-limited
sensors. The proposed collision-free motion algorithm (CFMA) is
a suboptimal yet efficient batching solution, which can be easily
applied in real-life open-space monitoring networks. Insights
from this foundational research will facilitate future opportunities
to implement and verify our method in operational monitoring
testbeds.

Index Terms— Environmental observation and monitoring,
autonomous sensors deployment, smart sensing network automa-
tion, collision-free motion algorithm, graph theory, vertex
coloring.

I. INTRODUCTION

FOR decades, researchers have been seeking ways to
deploy useful networks for realizing the goal of smart

living. Wireless sensor networks (WSNs) have been thriving
and attracting significant attention thanks to the advancements
of micro-electromechanical system (MEMS), sensing technol-
ogy, and wireless communication. A WSN is widely used for
habitat and environmental monitoring, surveillance (camera)
networks, medical application, agricultural assistance, and
as solutions to military problems [1]–[4]. For monitoring
and surveillance applications, sufficient sensing coverage is
essential for a WSN to operate successfully. Traditionally
maintaining such a network is labor-intensive, often requir-
ing additional staff charged with monitoring the sites daily
and responding to inquiries. We consider a smart sensing
network which has the ability to self-deploy mobile sensors
and react with proper responses in an automated manner.
With the growing prevalence of wireless mobile sensors,
automated sensors deployment (in lieu of manual placement)
has become practical and feasible [5]. In our prior research [6],
[7], we developed coverage-aware deployment protocols that
calculate best monitoring positions (goals) for all sensors.
However, the problem of actually coordinating a fleet of
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Fig. 1. Illustration of the sensors deployment problem in a smart sensing environment with mobile sensors each moving toward a specific designated (goal)
position; grouping strategy (batching algorithm) is the key to a successful deployment.

autonomous sensors and directing them from their random
initials to goals without collisions has been left unsolved.
In this follow-up research, we emphasize on resolving this
problem by designing actual collision-free motion strategies
for realizing a practical sensing environment.

Fig. 1 (a) epitomizes an open-space sensing environment
(such as an ocean floor), where each mobile sensor (tiny
robot) has to move from its initial (departure) location to the
goal (destination) position. Without careful path scheduling,
those tiny robots are likely to run into each other, resulting
in an unsuccessful deployment. As depicted in Fig. 1 (b),
robots B and C collide at the intersection of their moving
paths, further blocking the travel path of robot F to its goal
position. Meanwhile, robots E and D are prevented from
reaching their destinations because of the goal positions being
occupied by robots F and E respectively. In fact, robots D,
E, and F form a deadlock situation, which remains unsolved
in some previous works [8]–[10]. Such collision and deadlock
problems motivate us to design collision- and deadlock-free
motion algorithms for ensuring sensors goal reachability.

We investigate the path scheduling problem and propose
to apply batched movements by dividing robots into several
moving groups. One possible grouping strategy, as illustrated
in Fig. 1 (c), is to instruct robots A, D, E, F (group #1)
move first, then robot C (group #2), followed by robots B and
G (group #3). By assigning robots in proper moving groups
(batches), Fig. 1 (d) displays a successful deployment with all
robots now arriving at their correct goal positions.

Evidently, the grouping strategy (batching algorithm) plays
a key role in helping robots reach their intended goals
safely without collisions. Designing collision-free batching
algorithms is non-trivial, which requires carefully analyzing
all collision cases while considering computation and traveling
latency (attempting to minimize the number of moving batches
so as to accomplish the deployment task in a timely manner).

In this paper, we regard all sensors as dynamic objects (tiny
robots) and develop our collision-free motion algorithms based
on batched movements, to address the sensors deployment
problem. Our proposed batching algorithms incur little compu-
tation latency, moderate energy consumption, and ensure 100%
sensors goal reachability. The remainder of this paper is orga-
nized as follows. Section II prepares the readers with related
work and summarizes our unique contributions. We present
our CFPP, CFMA, and wCFMA protocol details in Section III,
Section IV, and Section V respectively. Section VI provides
performance comparisons in terms of goals reaching suc-
cess probability, deployment latency, and energy consumption.
Finally, we conclude the paper in Section VII. An illustrative
video that shows the operations of our current prototype can
be found at [11].

II. RELATED WORK

Traditional path-planning methods in the area of multi-
robot systems can be generally classified into three categories:
roadmap-based, performing cell decomposition, and applying
the concept of artificial potential field, according to the authors
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in [12] and [13]. The roadmap-based methods construct visi-
bility graphs to assist in the path-planning process [14]–[16],
in which the resultant moving paths may touch fixed obstacles
at the vertices or even edges that are considered unsafe.
To address this drawback, approaches based on cell decompo-
sition by computing Voronoi diagrams have been introduced
to perform path scheduling in a more precise way at the cost
of increased computation latency [13]. The third category of
path-planning approaches models the obstacles and targets
as electrostatic charges interacting with each other, creating
a potential field [17]–[19]. The obstacle exerts a repulsive
force while the target location has an attractive effect on
the robot position. This method enables path planning to be
completed in real time. However, as only local properties are
considered, the robots may get trapped at local minima or
aimless oscillation without reaching their goals. The afore-
mentioned approaches assume one or more fixed obstacles in
a multi-robot system, which differs from our mobile sensors
networking scene. In this paper, we investigate a sensing
system where all sensors are mobile and considered as
dynamic objects (rather than fixed obstacles).1

Another approach in finding shortest moving paths is based
on A* search [20]. A* works by expanding the vertices inside
the map and searching for the nodes with lower estimated dis-
tance to the goal. The ability of this A* search algorithm to be
manipulated in many ways leads to the development of many
path planning techniques [9], [10], [21]. Approaches based
on adapted GA (genetic algorithm) have also been proposed
to address the problem [22], [23]. A comprehensive study of
path-planning algorithms comparison can be found in [24].
In recent years, special-purpose research also puts interest
in using autonomous underwater vehicles (AUVs) for marine
geoscience studies in dangerous environments [25], [26].
In these settings, robots are deployed in an obstacle-free space
moving/flying from initial to goal positions to perform certain
tasks. However, those approaches require high computation
complexity and deal with independent robots navigating an
environment rather than coordinating a fleet of robots distrib-
uted to perform the monitoring task. In this paper, we consider
a smart sensing environment2 with environmental monitoring
application to automatically coordinate a fleet of autonomous
sensors (tiny robots) to move toward their designated goals
(destinations). To enable a smart environment with sufficient
sensing coverage, the success rate of goals reachability is
crucial in our target application.

Three more closely related path-planning methods to our
envisioned scenario that also deal with dynamic objects
include ADO [8], Super A* [9], and M* [10]. In ADO,
all robots are prioritized and equipped with omnidirectional
cameras (visual sensors) to perform real-time path-planning
computations. ADO suffers from the deadlock problem in
which some robots are unable to reach their destinations
(goal positions). In addition, extra (non-negligible) energy

1In our approach, instead of bypassing obstacles, we adopt batched move-
ments to ensure those tiny robots can move along a straight line.

2We define the smart sensing environment as a sensing system which has
the ability to sense the environment and react with proper responses in an
automated manner.

consumption is required due to the constant usage of visual
sensors for path calculations in ADO. On the other hand,
both M* and Super A* modify the classical A* search
algorithm [20] by taking environmental changes into account
while robots move. M* additionally introduces subdimensional
expansion, a framework to compute individual policy for each
robot first (neglecting the presence of other robots) and then
joint policy path is employed using an underlying planner
(based on A* search) to find optimal paths in the search space.
Another concept of backpropagation is introduced such that
the search space is only expanded where necessary (when the
planner encounters robot-robot collision). Super A* and M*
successfully resolve some deadlock cases that ADO fails to
handle. However, the triangular deadlock problem in ADO
remains unsolved in Super A* and M*. Moreover, extensive
computation latency is required in Super A* and M* due to
the high time-complexity nature of the A* search algorithm.
In our proposed motion mechanisms, computation latency,
execution (moving) time, and energy consumption are also
evaluated so that the deployment task can be accomplished in
a timely manner while conserving energy resources on sensors.

A. Our Contributions

In this research, we provide an in-depth analysis on the
sensors moving path scheduling problem and propose corre-
sponding motion algorithms. Below we summarize our unique
contributions.

First, we carefully classify all possible collision cases
and devise a collision-free path planning (CFPP) algorithm
(Section III) based on batched movements to guarantee all
the mobile sensors reach their goals (destinations) with 100%
success rate. The CFPP performance demonstrates the fea-
sibility of resolving collisions and deadlocks by moving in
batches.3 Second, to accelerate the deployment process (by
possibly reducing the number of required moving groups),
we observe the grouping (batching) strategy is similar to the
coloring procedure in graph theory. By constructing a conflict
graph, we model the collision-free path scheduling as the
well-known k-coloring problem, from which we reduce to
our k-batching problem (determining the minimum number
of required batches for a successful deployment) and prove its
NP completeness. Since the k-batching problem is intractable,
we develop CFMA (collision-free motion algorithm), a sim-
ple yet effective batching (coloring) heuristic mechanism,
to approximate the optimal solution (refer to Section IV for
proof and algorithm details). Third, to further enhance CFMA

3The preliminary results of CFPP have been reported and published in a
previous conference paper [27]. However, the prior work did not study the
aspects of minimizing the number of moving groups (batches) or shortening
the total deployment time, and lacks detailed results on sensors goal reach-
ability with effectively reduced computation and execution (travel) latency.
Also, the aspects of moving energy consumption and different initial/final
sensors configurations were not extensively evaluated in the prior work. In this
journal paper, we identify several inefficiencies of CFPP and propose two
enhanced collision-free motion algorithms, namely CFMA and wCFMA, for
accelerating the deployment process by possibly reducing the number of
required moving groups (batches) and shortening the total travel (moving) time
spent by all sensors. Though inspired from CFPP and also based on batched
movements, CFMA and wCFMA are two new path scheduling approaches
that operate quite differently from CFPP.
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performance, we propose wCFMA (weighted collision-free
motion algorithm), which reduces sensors execution (moving)
time by imposing smaller variance (difference) among travel
distances within the same batch (moving group). We regard
this as the weighted-batching problem and successfully prove
its NP-hardness by reducing from the weighted-coloring prob-
lem. Consequently, we design wCFMA, a weight-ordered
batching (coloring) heuristic mechanism, to approximate the
min-weighted solution (refer to Section V for proof and
algorithm details). Our wCFMA intends to generate batches
with shortened total execution (moving) time in the example
cases, thus accomplishing the sensors deployment task earlier
(compared to CFPP and CFMA). The proposed CFMA and
wCFMA grouping strategies can also be nicely applied to
other similar research problems modeled in the form of graph
coloring (using minimum number of colors) or weighted col-
oring (minimizing sum of total group weights). Furthermore,
we have also implemented a proof-of-concept prototype based
on moving robots (LEGO MINDSTORMS NXT 9797 [28]),
network camera M30 [29], and Tibbo embedded systems [30]
to demonstrate the operations of our proposed motion algo-
rithm in a real system [11].

Specifically, in this work, we propose a new perspec-
tive of pre-scheduled batched movements to bring down
the sensors deployment cost. There has been a growing
recognition of the need to keep spending (cost spent on
hardware and software) under control, even as environmental
monitoring projects become increasingly complex. That is
where our work comes in by introducing a practical solu-
tion. Existing path-planning methods for multi-robot systems
are computation-intensive and/or energy-consuming. Another
major concern is those previous approaches do not ensure
all robots reach their goal points (as demonstrated in
Section VI-A, Fig. 10 and Fig. 11). Sensors goal reachability
is critical in realizing an effective environmental monitoring
application.

Our theoretical contributions include interpretation of multi-
robot path planning as the coloring problem on a conflict
graph, proving NP-completeness of the k-batching problem
(Theorem 2), and verifying NP-hardness of the weighted-
batching problem (Theorem 3). Please note that we do not
directly use graph theory to solve our problem. By proving
NP-completeness/hardness, we show that there do not exist
efficient (polynomial-time) algorithms to determine optimal
moving sets. Therefore, we develop CFMA and wCFMA,
suboptimal yet efficient batching solutions, to address the
problems under study. Existing coloring algorithms only
take care of adjacent-coloring rule, ensuring adjacent nodes
colored differently, without considering coloring sequence
(robots movement order). However, in our target applica-
tion, movement order is important in resolving robot-robot
collisions or deadlocks. To address these new challenges,
in CFMA and wCFMA, we define collision Cases II and III
(Fig. 5) to impose extra restrictions in addition to the valid
adjacent-coloring rule. Adjusting colors for special conflict
Cases II and III can be found in the last segment of our
CFMA Algorithm. Unlike previous path-planning approaches,
our motion algorithms advance related research by proposing

computation-efficient and robust path-scheduling methods that
ensure all sensors reach their goals successfully.

III. PATH PLANNING STRATEGY

To enable actual sensors deployment, a collision-free mov-
ing path scheduling is essential, so that mobile sensors can
reach their destinations without colliding with each other.
However, the scheduling strategy is non-trivial since various
collision cases need be systematically classified and han-
dled/resolved in different ways.

A. Preliminaries

Assume that the sensor volume is neglected4 and each
sensor (tiny robot) can be regarded as a moving point on a
2D plane, while every moving path (traveled by a sensor)
formulated as a line. Suppose no two moving paths share the
same line (i.e., no path lies in the sub-path of another).5 We
identify the collision cases based on the following geometric
theorem.

Theorem 1: With respect to the line ax + by + c = 0 on a
2D plane, points Q1(x1, y1) and Q2(x2, y2) fall on the same
side if (ax1 +by1 + c)(ax2 +by2 + c) > 0, on different sides if
(ax1 +by1 +c)(ax2 +by2 +c) < 0, while one or both reside(s)
exactly on the line if (ax1 + by1 + c)(ax2 + by2 + c) = 0.

For an arbitrary sensor si departing from point pi with
coordinate (xi , yi ) to point p′

i with coordinate (x ′
i , y ′

i ), the
moving path can be formulated as a line, denoted as Li .
Similarly, the moving path of another sensor s j is given
as L j . Define pi j as the intersection point of lines Li and
L j , which can be easily obtained by solving the two line
equations. According to Theorem 1, we can now classify five
possible intersection (collision) cases for any two sensors si

and s j , as illustrated in Fig. 2, where d(pi, pi j) and d(p j, pi j)
represent the Euclidean distances from pi to pi j and from p j

to pi j . Case I shows the case in which points pi and p′
i fall

on different sides of line L j , whereas points p j and p′
j fall

on different sides of line Li as well. In Case II, the departure
point p j of sensor s j gets in the way of the moving path of
si , while in Case IV, on the contrary, the departure point pi

of sensor si blocks the moving path of s j . Case III draws the
condition in which the destination point p′

j of sensor s j lies on
the moving path of si , whereas Case V, in contrast, displays
the condition that destination point p′

i of sensor si falls on the
moving path of s j .

B. Collision-Free Path Planning (CFPP)

Given the five potential collision (intersection) cases caused
by any two moving paths, we establish a colliding set Ci

for each sensor, which includes all sensors whose moving
paths intersect with that of si . Instead of performing one-time
physical movements, we propose to use batched movements

4For collision-free path scheduling methods that consider the robot (sensor)
volume, please refer to our previous work [31], [32].

5To ensure that the geometric formulation can work properly, our algorithm
will first examine if any two moving paths share the same line. If this is really
the case, one of the involved mobile sensors’ initial (departure) location will
be slightly adjusted to resolve the sub-path problem.
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Fig. 2. Possible intersection (collision) cases generated by moving paths of
any two sensors si and s j , where pi (p j ) denotes the original position of si
(s j ) and p′

i (p′
j ) indicates the physical movement destination for sensor si (s j ).

TABLE I

SUMMARY OF NOTATIONS USED IN CFPP

such that the scheduling complexity can be reduced at the
expenses of increased moving latency. Define orderi as the
cardinality of set Ci (orderi = |Ci |) for sensor si , indicating
its moving order. We start from performing movements for
sensors with the smallest order value. All sensors with the
currently minimum (smallest) order value are contained in
set Mmin_order . Intuitively, sensors with order value of zero
can move simultaneously since no other sensors pose potential
colliding sources to them. For any sensor si with non-zero
orderi value, potential colliding conditions (on per node-pair
basis) caused by all members in its Ci set should be analyzed
and handled case by case. Specifically, all sensors are divided
into moving groups (batches) based on their order values and
processed round by round (batch by batch). Sensors in set
Mmin_order are evaluated in the same round. The evaluation
and processing details will be provided later in this section.
After the evaluations, a subset of Mmin_order (or probably the
whole Mmin_order set) is determined and all sensors included in
the subset are allowed to move simultaneously in the current
round. For sensor si that has been evaluated and permitted to
move, the t f lagi is set true, indicating its moving intention.
Once the physical movement has been successfully performed
by sensor si , moving flag m f lagi is set true and si is removed
from the consideration list. All order values for the remaining
sensors (physical movements not performed yet) should be
refreshed, and the batched scheduling procedure starts over
accordingly.

Now, we elaborate on the evaluation procedures for deter-
mining a set of movable sensors in a single round (batch).
Based on the idea of batched movements, we regard all sensors
with the currently minimum order value as a potential moving
batch and include them in set Mmin_order . We then analyze
all members in set Mmin_order one by one to determine their
moving possibilities. In our design, we start the evaluation
from sensor with the smallest ID, say s1, and identify all
possible collision cases caused by members in its colliding
set C1. For any two sensors si and s j with moving orders

Algorithm 1 Collision-free Path Planning (CFPP)
include all sensors in set S;
establish set Ci for ∀si ∈ S; // i = 1, · · · , n
evaluate orderi for ∀si ∈ S;
clear f i x_orderi , dirt yi , t f lagi , m f lagi for ∀si ∈ S; // all set to f alse
while (S !empty) do

re-establish set Ci for ∀si ∈ S;
re-evaluate orderi for ∀si ∈ S with f i x_orderi == f alse;
reset Ti = 0, Vi = V, dirt yi = f alse, t f lagi = f alse for ∀si ∈ S;

include all si with the minimum orderi value into the Mmin_order set;

for (each si ∈ Mmin_order ) do
set t f lagi = true;
for (each s j ∈ Ci ) do

classify the intersection (collision) case for si and s j ;
switch (case)

Case D-II: do Action D-II;
Case D-V: do Action D-V;
Case S-I: do Action S-I;
Case S-II: do Action S-II;
Case S-III: do Action S-III;
Case S-IV: do Action S-IV;
Case S-V: do Action S-V;

end for
end for
perform simultaneous physical movements for ∀si with t f lagi == true;
set m f lagi = true for such sensor si ; // physical movement performed
remove all si with m f lagi == true from sensors set S;

end while

(to be continued in next Algorithm segment)

Algorithm 1 Collision-Free Path Planning (CFPP) (cont.)
procedure Action D-II

slightly adjust location of s j from pj (original) to pj (adjusted);
procedure Action D-V

set orderi = order j + 1; set f i x_orderi = true;
invoke Action Deferred (si );

procedure Action S-I
if Ti + tpi→pi j = Tj + tp j →pi j then

if dirt y j == f alse then set Tj = Tj + �t; dirt y j = true;

else set orderi = orderi + 1; invoke Action Deferred (si );

procedure Action S-II
if Ti + tpi→pi j ≤ Tj then
slightly adjust location of s j from p j (original) to p j (adjusted);

procedure Action S-III
if Ti + tpi→pi j ≥ Tj + tp j →pi j then

if dir t y j == f alse then
set Tj = Ti + (tpi →pi j − tp j →pi j ) + �t; set dirt y j = true;

else set order j = order j + 1; invoke Action Deferred (s j );

procedure Action S-IV
if Ti ≥ Tj + tp j →pi j then

if dir t y j == f alse then
set Tj = Ti − tp j →pi j + �t; set dirt y j = true;

else slightly adjust location of si from pi (original) to pi (adjusted);

procedure Action S-V
if Ti + tpi→pi j ≤ Tj + tp j →pi j then

if dir t y j == f alse then
set Vj = Vi d(p j ,pi j )

d(pi ,pi j )+Vi (Ti −Tj )
+ �v; set dirt y j = true;

if Vj > Vmax then
set orderi = orderi + 1; invoke Action Deferred (si );

else set orderi = orderi + 1; invoke Action Deferred (si );
procedure Action Deferred (si )

set t f lagi = f alse;
do necessary slight adjustment of si ’s departure location to resolve
moving path blocking possibly caused by this not-moving decision;

(end of Algorithm 1)

orderi and order j , the previously five collision cases can be
further classified into ten cases according to the relationship
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Fig. 3. Every sensor si in the potential moving set Mmin_order should
be analyzed by identifying its intersection (collision) relationship with each
member in Ci , in which intersection cases D-II, D-V, S-I, S-II, S-III, S-IV,
and S-V require further consideration/processing, before including si into the
moving set (allowed to move in the current round).

of orderi and order j . Suppose si ∈ Mmin_order , s j ∈ Ci , and
orderi = order j , we term the five collision cases as Case
S-I, Case S-II, Case S-III, Case S-IV, and Case S-V, where
’S’ indicates that sensors si and s j are potentially scheduled to
move in the “same” round due to equal order value. On the
other hand, if orderi < order j (note that orderi > order j

is not possible since si ∈ Mmin_order ), we define another five
collision cases as Case D-I, Case D-II, Case D-III, Case D-
IV, and Case D-V, where ’D’ means si and s j are potentially
scheduled to move in “different” rounds due to their unequal
order values. In each potential collision case, on detecting
a colliding possibility, si tries to resolve the collision by
adjusting/prolonging the waiting time Tj or increasing the
moving speed Vj of sensor s j . Originally all waiting times are
set to zero, and moving speeds all set at a constant velocity
V . If the adjustment (on either waiting time or moving speed)
is successful, the colliding possibility is eliminated and si

moves on to evaluate collision cases with other members in
Ci . To avoid repeated adjustments on a single sensor, in our
design, each sensor is allowed to be adjusted (either on waiting
time or moving velocity) once. In addition, si itself cannot be
adjusted by other sensors in set Mmin_order that are evaluated
after it, if si is indeed scheduled to move in the current
round. We keep track of the adjustment possibility for sensor
si by the dir tyi bit, implying adjustable if set f alse and not
adjustable if set true. When si intends to resolve a collision by
adjusting another sensor with dir ty bit set true, the adjustment
is prohibited and si is not allowed to move in the current
round (t f lagi set to f alse), since the collision remains. Only
when all members in Ci with various colliding possibilities
are all resolved can sensor si be included into the movable set
and perform physical movement. Upon receiving the moving
instruction from the clusterhead, si waits for Ti (possibly
adjusted) and then moves with speed Vi (possibly adjusted).
In our route scheduling strategy, we try to include as many
sensors as possible to move simultaneously in the same round
(batch).

For each of the ten collision cases identified, we define
corresponding actions (Action D-I, Action D-II, · · · , Action

S-I, Action S-II, · · · ) to evaluate respective case and perform
necessary adjustments. If colliding possibility remains due to
unsuccessful adjustment, physical movement by sensor si is
not allowed and should be deferred. Thus we additionally
define Action Deferred to perform corresponding operations.
Note that in Case D-I, Case D-III, and Case D-IV, no action
is needed since si is scheduled to move before s j in different
rounds (no collision is likely to happen in the three cases
despite intersection exists between the two moving paths). For
the rest of seven cases, we describe the evaluation principles
exercised by respective action as follows (detailed operations
are available in Algorithm 2, Section III-C).

Action D-II In this case, since s j gets in the way of si ’s
moving path, the clusterhead instructs s j to slightly adjust

its location along line
−−→
p j p′

j to avoid collision. Assume the
location adjustment is small enough to have no effect on other
moving paths.

Action D-V Sensor si is not allowed to move, for its
destination point p′

i will block the moving path of s j in a
later round. In this case, the moving order of si should be
set larger than that of s j (orderi = order j + 1) to postpone
si ’s physical movement after s j . In addition, a f i x_orderi

flag should be set true, indicating no updates on orderi will
be performed in later rounds to ensure the delayed movement
after s j , and then Action Deferred is invoked for si .

Action S-I Define the traveling time from pi to the inter-
section point pi j as tpi →pi j (obtained from available d(pi, pi j)
and Vi ), the clusterhead evaluates if Ti +tpi →pi j = Tj +tp j →pi j ,
where Ti and Tj are the waiting times of si and s j as defined
earlier. If equality holds, a collision at the intersection is
expected, and the waiting time Tj of s j should be increased
by a small amount of �t to avoid the collision. However,
in case s j has already been processed with dir ty j set true, the
adjustment is prohibited and si is not allowed to move in the
current round. Consequently, moving order of si is increased
(orderi = orderi + 1) and Action Deferred is invoked for si .

Action S-II If si reaches the intersection point pi j no later
than s j ’s departure time, the clusterhead should instruct s j to

slightly adjust its location along line
−−→
p j p′

j to avoid collision.
Action S-III If s j reaches the intersection point pi j no

later than si , the destination point p′
j of s j will block the

moving path of si . In this case, the clusterhead should instruct
s j to increase its waiting time Tj by setting Tj = Ti +
(tpi →pi j − tp j →pi j ) + �t to ensure the delayed arrival of s j

at pi j (p′
j). If the adjustment of Tj is not successful due

to a true flag of dir ty j , then s j is not allowed to move
in the current round. Consequently, moving order of s j is
increased (order j = order j + 1) and Action Deferred is
invoked for s j .

Action S-IV If s j reaches the intersection point pi j no later
than si ’s departure time, the clusterhead should increase the
waiting time of s j by setting Tj = Ti − tp j →pi j + �t . In case
the adjustment is not allowed due to a true value of dir ty j ,
the clusterhead instructs si to slightly adjust its location along
line

−−→
pi p′

i to avoid collision.
Action S-V If si reaches the intersection point pi j no

later than s j , the destination point p′
i of si will block the
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Fig. 4. Example illustrating the operations of CFPP grouping strategy for sensors batched movements.

moving path of s j . In this case, the clusterhead should
instruct s j to increase its moving speed Vj by setting Vj =

Vi ·d(p j ,pi j )

d(pi ,pi j )+Vi (Ti −Tj )
+ �v, where �v is a small amount of speed

increment to ensure s j ’s earlier arrival at pi j (p′
i) than si .

However, if the adjusted Vj is larger than the maximum
possible moving speed Vmax or the adjustment of Vj is
prohibited due to a true value of dir ty j , then si is not allowed
to move in the current round. Moving order of si is increased
(orderi = orderi + 1) and Action Deferred is invoked for si .

Action Deferred Since si (s j ) is not allowed to move in the
current round, t f lagi (t f lag j ) is set f alse. In addition, the
clusterhead should confirm if this not-moving decision leads
to moving path blocking of any sensor in Mmin_order set that is
already allowed to move in the current round (with t f lag set
true), and do necessary slight location adjustment to resolve
the blocking.

Fig. 3 illustrates a snapshot of the CFPP operations. Note
that s4 has more intersections with other sensors, which are
not shown in the figure (omitted for brevity). In the current
round, potential moving set Mmin_order includes s1, s2, and
s3, all having the currently smallest order value of 3. For s1,
colliding conditions caused by all members in C1 are analyzed
and handled case by case. In this example, since s1 and
s2 are evaluated to reach intersection p12 simultaneously, the
clusterhead adjusts the waiting time of s2 by setting T2 =
T2 + �t to resolve the collision. Next, since s3 is found to
reach intersection p13 earlier than s1, blocking s1’s moving
path, the clusterhead instructs s3 to increase its waiting time
by setting T3 = T1 + (tp1→p13 − tp3→p13) + �t . As to s4

(scheduled to move in a later round), no action is required
since no collision is likely to happen between s1 and s4.
Consequently, the clusterhead includes s1 into the moving
set. Similar operations apply to s2. In our example, s2 has
no colliding possibilities with s1 and s3. However, since the
departure location p4 of s4 blocks s2’s moving path, the
clusterhead instructs s4 to slightly move from p4 (original)
to p4 (adjusted), as shown in Fig. 3 (b). As a result, s2 is also
included into the moving set. For s3, in our example, both
s1 and s2 do not pose colliding sources to s3. Unfortunately,
since the destination point p′

3 of s3 will block the moving
path of s4 in a future round, s3 is not allowed to move before
s4 (not included into the moving set), and order3 should be
updated to 6 (order4 +1) with f i x_order3 set true. After the
evaluations, sensors included in the moving set (i.e., s1 and s2)
perform physical movements simultaneously, and order4 and
set C4 are updated accordingly.

Table I summarizes the notations used in CFPP, and
Algorithm 2 provides the pseudocode for CFPP operations.

C. CFPP Summary

A running example illustrating the route scheduling pro-
cedures is available in Fig. 4. Note that in Round 3 of
this example, s9 is excluded from the moving set due to
an unsuccessful adjustment of s11’s waiting time (since T11

has been adjusted by the clusterhead to resolve collision with
s7 and can only be adjusted once according to the scheduling
principles adopted by CFPP). After the clusterhead decides
that s9 is not allowed to move in the current round, s9 no
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Fig. 5. Possible intersection (collision) cases and corresponding conflict links
(edges to be used in the conflict graph).

longer poses as a colliding source to s11. Consequently, s11

can be included into the current moving set (Round 3).

IV. ENHANCED PATH SCHEDULING

While CFPP operates correctly, yet the collision cases
classification and corresponding actions pose as a tedious
work. Nonetheless, we gain useful insights from the design
process, which prompts us to wonder whether or not CFPP
produces the minimum number of moving sets (batches).
In other words, does there exist an efficient path scheduling
algorithm that guarantees the fewest number of moving batches
to minimize the overall deployment time? We attempt to
answer this intriguing question and possibly enhance our path
scheduling (grouping) strategy as follows.

A. Problem Formulation

Observing the example in Fig. 4, we identify two main
problems in CFPP operations. First, scheduling min_order
sensors to move early may not be a good idea as those sensors
actually bear lesser colliding conflict to others and could be
handled later. Second, sensors with same order value are not
necessarily able to move in the same round. For instance,
s4 and s5 are on the collision course with each other and
should not be scheduled in same moving set despite having the
same order value (order4 = order5 = 2). On the other hand,
sensors with different order values are possible to move in the
same round without collisions. For instance, s2, s6 and s9 are
able to deploy simultaneously despite having different order
values (order2 = 2, order6 = 1, and order9 = 3). However,
CFPP conservatively schedules s2 (Round 2) and s6 (Round
5) to move alone respectively, as shown in Fig. 4. For a better
scheduling, whether or not two sensors can be assigned in
the same moving set should depend on their mutual conflict
relationship, rather than inspecting their order values alone
and separately.

Inspired from this observation, we aim to resolve the CFPP
inefficiency by first constructing a conflict graph to specifically
identify the conflict relationship between each pair of sensors
in their moving paths.

1) Construction of a Conflict Graph: We re-organize the
collision cases in CFPP into three possible intersection cate-
gories (collision types), as shown in Fig. 5. Case I plots the

moving paths of si and s j collide at the path intersection.6

Case II illustrates the departure (initial) location of s j gets
in the way of si ’s moving path whereas Case III draws the
condition in which the destination (goal) position of s j lies
on the moving path of si . The intersection cases sufficiently
reveal three collision types, allowing us to explicitly define
conflict links between sensors.

For a given set of n sensors and moving paths, we con-
struct an undirected conflict graph G ′ = (S, L) where S =
{s1, s2, . . . , sn} includes all sensor nodes and edge set L
contains all conflict links between any two sensors. That is,
(si , s j ) ∈ L iff moving paths of si and s j encounter one of the
three collision types (Case I, Case II, or Case III).

Furthermore, back to Fig. 5, since Case I indicates the two
sensors will reach the intersection at the same time, this sensor
pair should move in different rounds. We denote this conflict
type by a solid link in our conflict graph. For Case II, denoted
by a dotted link, s j should move no later than si , meaning that
s j must move earlier than si or be scheduled in the same round
as si to resolve the conflict. By setting up same_ f lag[i ][ j ] we
are able to identify this special case and possibly schedule si

and s j in the same group to reduce the number of moving sets
(batches). In Case III, we should instruct si to move earlier
than s j , as such early_ f lag[i ][ j ] must be set, drawn as a
dashed link to imply this conflict type in our conflict graph.
Algorithm 5 (the last segment) provides a detailed description
on how to handle special Cases II and III. At this moment,
we consider a conflict graph containing conflict links with no
distinction between different collision types.

A constructed conflict graph concisely defines the collision
relationship between each pair of sensors’ moving paths,
which helps in both theoretically analyzing the path scheduling
problem and our algorithm design in Section IV-B.

2) NP Completeness Proof: Now, we return to the inter-
esting question of how many moving sets (batches) are just
sufficient for a successful collision-free sensors deployment
with minimum execution time. For a given constructed conflict
graph, our path scheduling (grouping) strategy intends to
divide the sensors into different groups (batches) such that
all sensors scheduled in the same group (moving round)
do not collide with each other. Specifically, our grouping
strategy attempts to make sure adjacent nodes (connected
with one of the three conflict types defined in Section IV-A1)
in the conflict graph do not move simultaneously, so col-
lisions can be effectively eliminated. This design rationale
reminds us of the well-known vertex-coloring problem in
graph theory, which deals with coloring adjacent vertices
using different colors. A valid coloring of an undirected
graph G = (V , E) is an assignment of colors to the ver-
tices such that each vertex is assigned one color and no
two adjacent vertices share the same color. The k-coloring
problem has developed from the 3-coloring decision (yes/no)
problem to one that determines the minimum number of
colors needed to color a graph [33], [34], as formally defined
below.

6We consider practical sensors of different moving speeds. For sensors
si and s j with travel velocity vi and v j , Case I collision case holds iff
d(pi , pi j )/vi = d(p j , pi j )/v j .
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Definition 1: Given an undirected graph G = (V , E) with
vertex set V = {v1, v2, . . . , vn} and edge set E ⊆ V × V . A k-
coloring of G is a mapping (valid coloring) function f : V →
{1, . . . , k} where k is a positive integer, with each vertex vi

corresponding to an integer color value ci (1 ≤ ci ≤ k) such
that ci 	= c j for every edge (vi , v j ) ∈ E. In other words,
the numbers 1, 2, · · · , k represent the k colors, and adjacent
vertices must have different colors. The k-coloring problem is
to determine the minimum k.

The k-coloring problem has proven to be NP-complete
(NPC), from which we prove our path scheduling (k-batching)
problem is also NPC. Given a conflict graph, the k-batching
problem is to determine the minimum number of batches
(moving groups) required to accomplish a collision-free sen-
sors deployment, formally defined as follows.

Definition 2: Given a conflict graph G ′ = (S, L) with
sensor set S = {s1, s2, . . . , sn} and conflict link set L ⊆ S × S.
A k-batching of G ′ is a mapping (valid grouping) function
f ′ : S → {1, . . . , k} where k is a positive integer, with each
sensor node si corresponding to an integer group number
gi (1 ≤ gi ≤ k) such that gi 	= g j for every conflict link
(si , s j ) ∈ L. In other words, the numbers 1, 2, · · · , k denote
the k groups (batches), and adjacent sensor nodes must be
assigned in different moving groups (batches). The k-batching
problem is to determine the minimum k.

Theorem 2: Our k-batching problem is NP-complete.
Proof: The k-batching problem belongs to NP since we

can verify a solution easily in polynomial time. To prove k-
batching is NP-complete, we reduce k-coloring to k-batching
by showing k-coloring ≤p k-batching. In other words, any
instance of k-coloring can be reduced in polynomial time to an
instance of k-batching. Let G = (V , E) represent an arbitrary
instance of k-coloring. We can transform G with coloring
function f to an instance of the k-batching G ′ = (S, L) with
grouping function f ′ by taking S = V , L = E and group
number gi corresponding to the color value ci in polynomial
time. We claim that we can find a valid k-coloring of G if
and only if we can discover a collision-free k-batching of G ′.
For the if part, suppose that G can be validly colored using a
minimum number of k colors. By taking G = G ′ and f = f ′,
we can find a solution in G ′ with each sensor node si being
assigned group number gi = ci resulting in a minimum of
k batches (moving groups). Conversely, we prove the only
if part. Suppose that we can obtain a minimum k batches
for grouping all sensors without collisions in G ′. By taking
G ′ = G and f ′ = f , there must exist a valid coloring of G
with each vertex vi being colored ci = gi using a minimum
number of k colors, which completes the proof. �

B. Collision-Free Motion Algorithm (CFMA)

Since our k-batching problem is intractable, the answer
to determining the minimum required number of moving
sets (batches) cannot be easily obtained. Specifically, there
does not exist an efficient (polynomial-time) path scheduling
algorithm that guarantees the fewest number of moving batches
to minimize the overall deployment execution time. Therefore,
we devise CFMA (collision-free motion algorithm), a simple

TABLE II

SUMMARY OF NOTATIONS USED IN CFMA

Fig. 6. Detection of a circular deadlock.

yet effective batching (coloring) strategy, to approximate the
optimal solution.

1) Algorithm Description: In this proposed heuristic algo-
rithm, we attempt to address the two main drawbacks in CFPP
(identified in Section IV-A) by first constructing a conflict
graph to reflect mutual conflict (collision) relationship between
sensors and then assigning batches (colors) from highest- to
lowest-degree nodes in a greedy manner. Here we define
the node degree as the number of conflict links a sensor is
connected with in a conflict graph. The strategy of considering
sensors with high conflict degrees before sensors with low
conflict degrees intends to take care of sensors with the largest
number of conflicts as early as possible.7

CFMA starts out with an established conflict graph. For
each pair of sensors (si , s j ) connected with a conflict link,
a specific con f lict_type[i ][ j ] is set values 1, 2, or 3 to
respectively indicate the three collision cases Case I, Case II,
and Case III described in Section IV-A1 (illustrated in Fig. 5).
Before performing the coloring (grouping) process, we need
to identify potential circular deadlocks. First, CFMA examines
all sensor pairs and constructs chains, set of ordered sensors
based on the early_ f lag[i ][ j ] defined in Section IV-A1.
Specifically, chainx = {si , s j } indicates that si should move

7In other words, we attempt to perform the vertex-coloring (grouping)
process in a greedy manner, starting from the highest-degree sensors.
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Fig. 7. Example illustrating the operations of CFMA grouping strategy for sensors batched movements.

earlier to avoid being blocked by s j . Take Fig. 6 as an example,
four chains are established: chain1 = {1, 4}, chain2 = {2, 1},
chain3 = {3, 2}, and chain4 = {4, 3}. Second, all chains are
examined to produce merged chains by repeatedly connecting
any two chains chainx and chainy if tail sensor in chainx

equals head sensor in chainy. In Fig. 6, the four chains
are merged into one large chain = {1, 4, 3, 2, 1}. Finally,
our algorithm checks the head and tail sensors in every
merged chain. A circular deadlock (loop) is detected if head
sensor equals tail sensor within the chain. In our example,
the merged chain = {1, 4, 3, 2, 1} happens to be a loop
(circular deadlock) with the same head and tail sensor s1. Once
a circular deadlock is detected, CFMA will apply the same
color to all involved sensors in the loop. In other words, those
sensors involved in the circular deadlock will be scheduled in
the same moving batch and act together (colored as a group)
thereafter. Consequently, in this example, all four sensors s1,
s2, s3, and s4 will move simultaneously, hence resolving the
circular deadlock problem.

Our goal is to assign as few collision-free moving groups
as possible to all sensors (associated with valid coloring for
the conflict graph using as few colors as possible). The col-
oring (grouping) process is applied in the order of decreasing

node degrees, meaning that si with max_degree will be
colored first. In case of sensors with the same degree, si will
be considered before s j if i < j . A used color set Ui keeps
track of colors not allowed for si because these colors have
already been allocated to neighboring nodes. Once producing a
successfully colored conflict graph,8 CFMA returns to handle
special collision cases Case II and Case III where some
colors adjustment may be necessary. Finally, sensors perform
physical movements accordingly in the order of their assigned
colors (moving groups).

Table II summarizes the notations used in CFMA, and
Algorithm 5 provides the CFMA pseudocode, presented in
three segments. The first Algorithm 5 segment describes the
procedure of classifying conflict types for every sensor pair
(si , s j ) and constructing corresponding conflict graph. The
second segment details on how to detect and resolve potential
deadlocks, followed by a complete coloring process. Finally,
the last segment illustrates the process of handling special

8Other existing vertex-coloring schemes are also applicable in scheduling
collision-free groups (batches). However, since the k-batching problem is NP-
complete, like our CFMA coloring algorithm, the number of scheduled moving
batches cannot be guaranteed to be minimum.
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Algorithm 2 Collision-Free Motion Algorithm (CFMA)
include all sensors in set S; // i = 1, · · · , n
initiate con f lict_type[i ][ j ] = 0 ∀si , s j ∈ S;
for each sensor pair (si ,s j ) where i 	= j do

classify the conflict (collision) type
switch (type)

Case I: set con f lict_type[i ][ j ] = 1;
// si and s j reach the intersection simultaneously
Case II: set con f lict_t ype[i][ j ] = 2;
// s j ’s start position blocks si ’s moving path
Case III: set con f lict_t ype[i][ j ] = 3;
// s j ’s goal position blocks si ’s moving path

end for
clear degreei , max_degree,same_ f lag[i ][ j ],
early_ f lag[i ][ j ];
for ∀si , s j ∈ S do

initiate conflict set Ci = ∅;
for (i=1, i++, i ≤ n) do

for ( j=1, j++, j ≤ n) do
if con f lict_type[i ][ j ] ‖ con f lict_type[ j ][i ] != 0
then

degreei++;
include s j into conflict set Ci ;

if con f lict_type[i ][ j ] == 2 then
same_ f lag[i ][ j ] = 1;

// si , s j must be in same moving round or s j moves earlier

else if con f lict_t ype[i][ j ] == 3 then
early_ f lag[i][ j ] = 1;

// si must move earlier or s j reaches intersection pi j later

if degreei > max_degree then
max_degree = degreei ;

end for
end for

end for
// conflict graph successfully established with node degree information

sort the coloring order for ∀si ∈ S in decreasing degrees;

(to be continued in next Algorithm segment)

conflict Cases II and III. Now, the number of required moving
sets is indicated by the value of color_count.

2) An Example: Using the same configuration with our
CFPP example, Fig. 7 displays the constructed conflict graph
and corresponding coloring process inside the dashed box.
Starting from the max_degree = 2 with smallest sen-
sor ID, CFMA colors s1 red (c1), followed by s2 colored
green (c2). Next, sensors s7, s9, s11 are colored red (c1),
green (c2), and blue (c3) respectively according to the col-
oring rules. Then CFMA proceeds to color remaining sen-
sors with lower degrees until all sensors have been validly
colored. Finally, CFMA inspects the special collision cases
(Cases II and III) and discovers s10 should move simultane-
ously with s2 (same_ f lag[10][2] = 1), thus changing color
from c1 to c2 for s10. So far a total of three colors have been
applied, which happens to be the minimum required number
of colors because there is a triangle in the graph (formed
by sensors s7, s9, s11). In any undirected graph containing a
triangle, at least three colors are needed for a valid coloring.
Consequently, CFMA effectively improves the total execution
time by reducing from 5 rounds in CFPP to 3 rounds, which

Algorithm 2 CFMA (Second Segment Continued)
initiate loop_count = 0, chain_count = 0; clear chain = ∅;
clear loopi = 0 for ∀si ∈ S;
for (i=1, i++, i ≤ n) do

for ( j=1, j++, j ≤ n) do
if early_ f lag[i][ j ] == 1 then

chain_count + +;
include sensors si and s j (orderly) into chainchain_count ;

end for
merge chainx and chainy if tail sensor in chainx == head sensor
in chainy ;
update chain_count after merging operations;
for ( j=1, j++, j ≤ chain_count) do

if head sensor == tail sensor in chain j then
loop_count + +; // circular deadlock detected
loopk = loop_count ∀sk ∈ chain j ;

end for
end for
// si with max_degree colored first
establish ordered set Sorder ;
// for si , s j with same degree, si will be considered before s j if i < j

initiate used color set Ui = ∅ for ∀si ∈ Sorder ;
clear colori = 0, color_count = 0;
for (i=1, i++, i ≤ n) do

if colori 	= 0 then continue; // skip coloring
if Ui == ∅ then colori = 1;
else choose a color c /∈ Ui ; set colori = c;
for each s j ∈ conflict set Ci do

add colori into used color set U j ;
end for
for each s j with loop j = loopi && loopi 	= 0 do

set color j = colori ; // all sensors involved in same loop
(circular deadlock) applied same color
for each sk ∈ conflict set C j do

add color j into used color set Uk ;
end for

end for
if colori > color_count then color_count = colori ;

end for // coloring completed

(to be continued in next Algorithm segment)

Algorithm 2 CFMA (Final Segment)
for each sensor pair (si , s j ) where i 	= j do

if same_ f lag[i][ j ] == 1 then
if feasible then set colori = color j or color j = colori ;

else slightly adjust location of s j from p j (original) to p j ’ (adjusted);
if early_ f lag[i][ j ] == 1 && colori ≥ color j then

if colori == color j && tp j →pi j > tpi →pi j then no action;

else if feasible then switch colori and color j ;
else set color j = color_count + +; check C j ;

end for // adjust colors for special conflict Cases II and III
clear moving flag m f lagi for ∀si ∈ S;
while (S !empty) do

for (c = 1, c + +, c ≤ color_count) do
perform simultaneous physical movements for ∀si with colori = c;
set m f lagi = true for such sensor si ;
// physical movements performed

remove all si with m f lagi == true from sensors set S;
end for

end while

(end of Algorithm 5)

turns out to be the optimal (smallest) number of required
moving sets (batches) for a collision-free deployment in this
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configuration.9 Suppose w(Br ) denotes the longest travel time
among all sensors in moving batch Br , here r = 1, 2, 3, then
the corresponding total execution time T can be obtained by
summing up w(Br ). That is, T = ∑3

r=1 w(Br ) in this CFMA
example.

V. WEIGHTED PATH SCHEDULING

Now that CFMA successfully reduces moving sets (batches)
from 5 rounds in CFPP to 3 rounds (as shown in Fig. 7),
the total execution time has been effectively decreased. If all
robots require the same or similar travel times, then minimiz-
ing the number of moving batches naturally translates to min-
imized overall execution time. However, in a real deployment,
robots (mobile sensors) typically take different travel times
to their respective destinations (goal positions). For a moving
set (group) containing robots with mixed long and short travel
times, the execution time to complete physical movements
within this group is determined by the longest travel time.
From this perspective, a solution using fewer batches does
not always perform better than another solution requiring
more batches in terms of total execution time. Specifically,
minimizing the number of moving sets does not necessarily
translate to minimized total execution time, due to the fact that
the number of batches cannot solely determine the aggregate
required deployment time.

In light of this, we associate each sensor si with a
weight defined by its travel time (moving from initial to
goal positions) and investigate the weighted path scheduling
problem. One can easily obtain the required travel time
w(si ) for sensor si by computing w(si ) = distance(si )

velocit y(si )
. For

each batch (moving set) Br , the weight of Br is defined
as w(Br ) = max{w(si)|si ∈ Br } since the elapsed time to
complete physical movements depends on the longest travel
time among all sensors within this batch. Our idea is to design
an enhanced grouping strategy that aptly arranges sensors
with similar travel times in one group, combining with the
goal of employing as few moving sets as possible, to further
improve (accelerate) the total deployment time.

A. Motivation for Further Enhancement

We contemplate the example in Fig. 8 where all sensors
are assumed to travel with the same moving speed, so the
weight parameter (time cost) is proportional to the travel
distance. Here all sensors are associated with weights w(s1) =
100, w(s2) = w(s3) = 40, w(s4) = 20, w(s5) = 40,
and w(s6) = 100 (distance) units. Fig. 8 (a) shows the
grouping result from applying CFMA employing three colors
(moving sets). The first moving set B1 contains s1, s4 with
weight w(B1) = max{w(s1),w(s4)} = max{100, 20} = 100,
whereas the second and third moving sets imposing weights
w(B2) = max{w(s2),w(s3),w(s5)} = max{40, 40, 40} =
40 and w(B3) = max{w(s6)} = max{100} = 100. As a result,
CFMA produces a total moving cost of 240 units.

9From the proof in Theorem 4.3, in general, the number of moving batches
calculated by CFMA cannot be guaranteed to be optimal (minimum).

Fig. 8. Example showing the benefit of considering weight (traveling
distance) in our grouping strategy (assuming the same moving speed); total
deployment cost is reduced from 240 units (40 sec) to 160 units (26 sec).

To further enhance the performance with reduced moving
cost, we consider weight (traveling distance) in the group-
ing strategy by starting group arrangement from sensors
associated with the highest weight. Thus s1, s6 are assigned
to the first moving set B1 producing weight w(B1) =
max{w(s1),w(s6)} = max{100, 100} = 100, whereas the
second and third moving sets imposing weights w(B2) =
max{w(s2),w(s3),w(s5)} = max{40, 40, 40} = 40 and
w(B3) = max{w(s4)} = max{20} = 20, as illustrated
in Fig. 8 (b). Consequently, this new arrangement results
in a total moving (travel) cost of 160 units, which shows
a noticeable improvement in cost reduction by 33%. The
enhancement brought by incorporating weights (time costs)
into the grouping strategy motivates us to study the problem
complexity of weighted path scheduling.

B. Problem Formulation

In Section IV-A2 we regard our path scheduling to min-
imize moving sets as a reduced case from the k-coloring
problem in graph theory. As investigating the problem further,
we discover, as mentioned in the beginning of Section V,
minimizing the number of moving batches does not always
yield minimized total travel cost. When we consider weights
(time costs) in the grouping strategy, the overall execution
time can be effectively reduced, as demonstrated in Fig. 8(b).
For the goal of speeding up deployment time, weights should
be taken into consideration when we perform the batch-
ing (coloring) process, referred to as the weighted-batching
problem. This reminds us of another coloring problem, known
as weighted-coloring in graph theory. The weighted-coloring
is a weighted version of the coloring problem which consists
in finding a color partition P = (P1, · · · , Pk) (k is the
number of used colors) in the vertex set V of an undirected
graph G into stable sets and minimizing

∑k
r=1 w(Pr ) where

the partition weight w(Pr ) is defined as max{w(vi )|vi ∈
Pr }. Note that the weighted-coloring problem attempts to
minimize the sum of total weights imposed by all partitions,
rather than optimize (minimize) the number of partitions k.
Similarly, our weighted-batching problem intends to find a
batch arrangement producing a minimum sum of weights (time
costs), instead of minimizing the number of batches.

1) NP Hardness Proof: We formally define the weighted-
coloring problem as follows.
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Definition 3: Given an undirected graph G = (V , E, w)
with vertex set V = {v1, v2, . . . , vn} and edge set E ⊆
V × V , the vertex-weighted function w assigns a positive real
number w(vi ) ≥ 0 for any vertex vi ∈ V . The weighted-
coloring problem is to find a valid coloring that contains
a color partition P = (P1, · · · , Pk) of the vertex set V
minimizing

∑k
r=1 w(Pr ) where the color partition weight

w(Pr ) = max{w(vi)|vi ∈ Pr }.
The weighted-coloring problem was originally proposed

in [35] and proven to be NP-hard [36], from which we prove
our weighted path scheduling (weighted-batching) problem is
also NP-hard. Given a conflict graph, the weighted-batching
problem is to determine a batch arrangement with a minimized
sum of total weights (travel time costs) to optimize the
collision-free deployment time, formally defined below.

Definition 4: Given a conflict graph G ′ = (S, L, w′) with
sensor set S = {s1, s2, . . . , sn} and conflict link set L ⊆ S × S,
the sensor-weighted function w′ assigns a positive real number
w′(si ) ≥ 0 for any sensor si ∈ S. The weighted-batching
problem is to find a collision-free batching that contains
a batch partition B = (B1, · · · , Bk) of the sensor set S
minimizing

∑k
r=1 w′(Br) where the batch partition weight

w′(Br ) = max{w′(si )|si ∈ Br }.
Theorem 3: Our weighted-batching problem is NP-hard.

Proof: To prove weighted-batching is NP-hard, we reduce
weighted-coloring to weighted-batching by showing weighted-
coloring ≤p weighted-batching. In other words, any instance
of weighted-coloring can be reduced in polynomial time to
an instance of weighted-batching. Let G = (V , E, w) with
coloring function f and color partition P represent an arbitrary
instance of weighted-coloring. We can transform G with
coloring function f and color partition P to an instance of the
weighted-batching G ′ = (S, L, w′) with grouping function f ′
and batch partition B by taking S = V , L = E , w′ = w,
group number gi corresponding to the color value ci and
batch partition Br corresponding to the color partition Pr in
polynomial time. We claim that we can find a valid weighted-
coloring of G if and only if we can discover a collision-
free weighted-batching of G ′. For the if part, suppose that
G can be validly colored with minimized

∑k
r=1 w(Pr ) where

w(Pr ) = max{w(vi)|vi ∈ Pr }. By taking G = G ′, f = f ′
and Pr = Br , we can find a solution in G ′ with each sensor
node si being assigned group number gi = ci resulting in
a minimized

∑k
r=1 w′(Br ) (sum of batch partition weights)

where w′(Br) = max{w′(si )|si ∈ Br}. Conversely, we prove
the only if part. Suppose that we can obtain a collision-free
(valid) sensors grouping arrangement with minimized total
travel time in G ′. By taking G ′ = G, f ′ = f and Br = Pr ,
there must exist a valid coloring of G with each vertex vi

being colored ci = gi producing a minimized
∑k

r=1 w(Pr )
(sum of color partition weights), which completes the proof.

�

C. Weighted CFMA (wCFMA)

Since the weighted-batching problem belongs to NP-hard,
we propose wCFMA, a weight-ordered heuristic algorithm,
to approximate the min-weighted solution. Our idea is to
impose smaller variance (difference) among travel time costs

TABLE III

SUMMARY OF NOTATIONS USED IN WCFMA

Algorithm 3 Weighted CFMA (wCFMA)
initiate and classify conflict type (same as CFMA)
calculate weighti for all sensors
clear max_weight , same_ f lag[i][ j ], early_ f lag[i][ j ];
for ∀si , s j ∈ S do

initiate conflict set Ci = ∅;
for (i=1, i++, i ≤ n) do

for ( j=1, j++, j ≤ n) do
if con f lict_t ype[i][ j ] ‖ con f lict_t ype[ j ][i] != 0 then

include s j into conflict set Ci ;
if con f lict_t ype[i][ j ] == 2 then

same_ f lag[i][ j ] = 1;
//si , s j must be in same moving round or s j moves earlier

else if con f lict_t ype[i][ j ] == 3 then
early_ f lag[i][ j ] = 1;

// si must move earlier or s j reaches intersection pi j later

if weighti > max_weight then
max_weight = weighti ;

end for
end for

end for
// conflict graph successfully established with node weight information
sort the coloring order for ∀si ∈ S in decreasing weights;
//si with max_weight colored first
establish ordered set Sorder ;
// for si , s j with same weight, si will be considered before s j if i < j

initiate used color set Ui = ∅ for ∀si ∈ Sorder ;
clear colori = 0, color_count = 0;
perform coloring process (same as CFMA)
adjust colors for special conflict Cases II and III
perform physical movements (same as CFMA)

within the same moving batch. In contrast to CFMA intending
to reduce the number of batches, wCFMA attempts to reduce
the sum of batch weights, where weight of a moving batch is
the maximum (longest) travel time among sensors in the same
batch.

1) Algorithm Description: wCFMA mostly follows the pre-
viously outlined CFMA method. The key difference lies in the
coloring process, in which wCFMA colors sensors in the order
of decreasing weights. Table III summarizes the notations
used in wCFMA, and Algorithm 6 provides the wCFMA
pseudocode.

2) An Example: Our wCFMA intends to generate
batches with shortened total execution (moving) time, thus
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Fig. 9. Example illustrating the operations of our wCFMA grouping strategy for sensors batched movements.

accomplishing the sensors deployment task earlier (compared
to CFPP and CFMA). Fig. 9 illustrates the wCFMA coloring
process which results in 3 rounds (same as CFMA) with total
moving cost of 190 units. Compared to 290 units in CFPP and
205 units in CFMA, the overall execution cost in wCFMA
improves (reduces) by 35% (improved from CFPP) and 7.3%
(further improved from CFMA) respectively. In our prototype,
one grid unit equals 1 cm, and the average moving speed of
our robots is measured at 0.06 m/sec. Hence the total execution
time can be obtained at 48 sec (CFPP), 34 sec (CFMA), and
31 sec (wCFMA), respectively.

VI. PERFORMANCE EVALUATION

In this section, we validate our motion algorithms by
comparing the performance with three other path-planning
approaches: ADO (introduced in [8]), Super A* (introduced
in [9]) and M* algorithm (introduced in [10]).

A. Sensors Goal Reachability

Fig. 10 depicts a configuration consisting of 20 random
moving paths with three deadlock situations. Potential dead-
locks #1 and #2 simulate the situation when a goal posi-
tion blocks another sensor’s moving path, whereas potential

deadlock #3 demonstrates a triangular deadlock situation,
in which all involved sensors are prevented from moving.
This configuration is arranged in order to observe the capa-
bility of path-planning algorithms on resolving deadlocks, as
mentioned in [37].10

Fig. 11 shows the sensors goal reachability accomplished
by CFPP, CFMA, wCFMA, ADO, Super A*, and M* as
time advances. Samples are taken every 20 seconds to record
the reachability rate within a set time. We observe that
ADO suffers from deadlocks #1 and #3 at time 20, which
stop sensors s11, s16, s17, s18 from moving to their destinations
(goals). At time 40, ADO encounters deadlock #2, which
prevents sensor s14 from reaching its goal position. After
time 40, ADO is unable to make any further progress with
eventually 75% final goal reachability. Super A* is capable
of resolving deadlocks #1 and #2, but unable to handle the
triangular deadlock #3, which occurs at time 20 and traps
sensors s16, s17, s18 from departing toward their destinations.
Super A* stops making progress after time 40, leading to 85%

10Here we define that deadlocks among two or more robots (mobile sensors)
occur if these robots block each other in a way such that any or all of them
is/are unable to continue along its/their trajectory (traveling path) without
causing a collision.
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Fig. 10. Random path configuration of 20 mobile sensors in a monitored
200 × 200 area with potential deadlocks #1, #2, and #3.

final goal reachability. Similar to Super A*, M* also suffers
from deadlock #3, leading to 85% final goal reachability.

In contrast, our CFPP is capable of resolving all deadlock
situations. For deadlocks #1 and #2 (classified as Case D-V in
our CFPP algorithm), sensors s4 and s10 execute Case D-V by
deferring their movements (scheduled in a later batch after s11

and s14 reach their goal positions). For deadlock #3 (a trian-
gular deadlock), since sensors s16, s17, s18 will be scheduled in
the same moving order, CFPP naturally resolves this deadlock
situation by allowing three sensors to move simultaneously
without blocking each other. Interestingly, CFPP reachability
grows slowly (due to the batched movements applied by
CFPP) and outperforms the other three approaches after time
passes 80, eventually leading to 100% goal reachability.

CFMA also defers the movement of sensors s4 and s10 after
s11 and s14 reach their goals, resolving deadlocks #1 and #2,
whereas the triangular deadlock #3 is handled by allowing
three sensors to move in the same round (batch). CFMA
achieves 100% goal reachability at time 60 (earlier than CFPP)
due to the reduced number of moving batches employed.
wCFMA further improves the overall deployment time by
grouping sensors with longer travel distances (s1, s11, s12, s14)
in the same batch, while CFMA arranges s1 and s14 (two
sensors with longer paths) to move in different batches. As a
result, wCFMA achieves 100% goal reachability before time
40 (fastest among all approaches).

We conduct extensive experiments against various sensor
populations (creating various sensor densities) to observe how
each mechanism performs in different sensor configurations.
Fig. 12 illustrates a monitored 200 × 200 area with up
to 35 sensors under three different configurations: (a) bal-
anced initial/goal positions, (b) crowded initial positions, and
(c) crowded goal positions.

B. Computation Latency and Execution Time

Fig. 12 (d)(e)(f) show the results of our experiments with
three different configurations. ADO suffers from the dead-
lock problems in which some robots are unable to reach

Fig. 11. Sensors goal reachability accomplished by our CFPP, CFMA,
wCFMA, also Super A*, M*, and ADO path-planning strategies with the
existence of potential deadlocks #1, #2, and #3 in a monitored 200×200 area.

their destinations (goal positions) with reachability weakening
into 80% as the population of sensors grows. Super A* is
capable of approaching 100% reachability under a balanced
configuration, yet with crowded initials and crowded goals,
the reachability of Super A* drops, indicating this mechanism
is vulnerable to uneven distribution of sensors. Although M*
performs relatively well with small numbers of sensors, its
performance weakens significantly as the population grows
because the algorithm fails to generate safe moving paths
for most sensors. In fact, M* reachability drops drastically
to almost 0% in the second configuration (crowded initials).
When the initial points of sensors are very crowded (very close
to each others), the tree expansion in M* encounters failures
very early, and the mechanism eventually fails to generate
moving paths for most/all of the sensors as the population
grows. In contrast, our CFPP, CFMA, and wCFMA can safely
generate collision-free paths and deliver all sensors to their
destinations with 100% goal reachability for various sensor
populations under all three configurations.

Fig. 12 (d)(e)(f) also display the sensors deployment time
incurred by all six approaches. The total deployment time
consists of computation latency (shaded parts) and execu-
tion (moving) time (unshaded/light parts). We define the
moving time as the time required for all robots to travel to their
goals (from robots start moving until no robot moves anymore,
even though in some cases, not all robots can successfully
reach their goals). CFPP, CFMA, wCFMA and ADO manifest
little computation latency (so that it might be difficult to
observe in the figure, as the value is very small, close to zero
second), while M* and Super A* require significantly longer
time to compute path-planning solutions (can be observed
in the figure clearly). Apparently, computation latency with
M* increases drastically as the number of mobile sensors
(moving paths) grows, due to extensive computation required
by the tree expansion method in M* algorithm. In the second
(crowded initials) and third configurations (crowded goals), the
generated paths encounter failures (collisions) and M* needs to
retrace backward (initiating backpropagation sets), leading to
growing dimensions of the search space/tree, consuming even
more computational time. For execution (moving) time, we can
observe that CFPP spends the most time for travel due to its
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Fig. 12. Sensors goal reachability and sensors deployment time accomplished by different path-planning strategies in a monitored 200×200 area under three
deployment scenarios with (a) balanced initial/goal positions, (b) crowded initial positions, and (c) crowded goal positions; performance results are shown in
(d), (e), and (f) respectively.

batched movements in a conservative way, whereas CFMA
and wCFMA improve (decrease) the travel time noticeably
because of minimized number of batches and minimized sum
of total time costs. The travel (execution) time for M* drops as
the population grows, because most robots are unable to reach
their intended destinations (algorithm fails to generate paths
for those robots). Despite that CFPP consumes more execution
time, the total deployment time required by M* is longer than
CFPP when sensor population increases (over 30 sensors in
the figure); in fact, M* fails to deliver most sensors whereas
CFPP still achieves a 100% reachability. Overall, this set of
experiments demonstrates our CFMA and wCFMA outperform
other approaches in terms of sensors deployment latency while
maintaining 100% goal reachability.

C. Energy Consumption

To model the moving energy, we estimate the energy
consumed by the motion device moving for one grid unit by
performing real measurements on the sensor robot used in our

Fig. 13. Total energy consumption incurred by different path-planning
strategies under various numbers of wireless mobile sensors in a monitored
200 × 200 area.

implementation testbed [7], based on moving robots (LEGO
MINDSTORMS NXT 9797 [28]), with grid size equal to
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1 cm. The robot assembles six 1.2 V 2000 mAh rechargeable
NiMH batteries with measured 200 ∼ 290 mA moving current
and average moving speed at 0.06 m/sec. Consequently, the
average moving energy consumption per grid (unit distance)
can be obtained by 0.29×7.2× ( 0.01

0.06 ) = 0.348 Joule. We then
compute the total moving energy consumption based on the
traveling distance accordingly. To model the energy consumed
by visual sensors (cameras) in ADO (recall that ADO algo-
rithm depends on the presence of omnidirectional cameras
for calculating moving paths, as described in Section II),
we perform measurements on a commercial video camera M30
Series [29]. An estimated 3.4 Watt on average (ranging from
2.2 to 4.6 Watt) facilitates our calculation of the total camera
energy required by an individual sensor in ADO, which can
be obtained by 3.4 × moving time (sec) Joule.

Fig. 13 displays the aggregate energy consumed by six
approaches under a balanced sensors configuration. Our pro-
posed mechanisms (CFPP, CFMA and wCFMA) consume the
least aggregate energy while achieving 100% goal reachability,
whereas ADO produces the most power cost due to extra
energy consumed by visual sensors (omnidirectional cameras).
Meanwhile, since the generated Super A* paths are not always
in straight lines (shortest paths), Super A* consumes relatively
more moving energy as compared to our approaches. Note
that, as sensor population grows, M* deployment consumes
less energy, not because of improved efficiency, but due to
its inability to deliver most of the robots to their intended
destinations (most robots fail to move with only 58% goal
reachability). Consequently, this set of experiments further
demonstrates our proposed motion algorithms are practical in
terms of energy efficiency.

VII. CONCLUSION AND FUTURE APPLICATIONS

In this paper, we devised three collision-free motion algo-
rithms (CFPP, CFMA, wCFMA) to schedule moving paths
for the mobile sensors deployment problem. When sensors
move around to self-deploy, the motion algorithm comes
into play by systematically classifying colliding cases and
employing batched movements. Our proposed mechanisms
guarantee 100% sensors goal reachability due to the capability
of judiciously grouping all sensors and guiding them to
their goals without causing collisions nor deadlocks. With
the assistance of an IoT application development tool [38],
we have implemented a proof-of-concept prototype11 based
on moving robots (LEGO MINDSTORMS NXT 9797 [28]),
network camera M30 [29], and Tibbo embedded systems [30]
to further corroborate our CFMA protocol feasibility in a
real-life environment. A brief demonstration video on our
experiments is available at [11]. Among a great number of
practical IoT testbeds that have been set up during recent years,
potential application targets include roof/bridge monitoring
networks, agricultural plant watering schedules to enable smart
farming, underwater sensor systems [25], [39], etc. We observe

11In our system, robots are equipped with collision-detection sensors to
prevent occasional bumps in case of path prediction inaccuracy. When that
happens, involved robots will stop and wait for central server’s instructions
before proceeding further.

that IoT testbeds operated in open space are in need of
effective, intelligent yet not too complicated, collision-free
motion scheduling algorithms. We expect the concept and
deployment of our proposed approaches can facilitate the
realization of various meaningful IoT applications in the near
future.
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