
CFPP: Collision-free Path Planning for Wireless

Mobile Sensors Deployment†

Ting-Yu Lin⋆, Hendro Agus Santoso, Chung-An Lin, and Gui-Liu Wang

Department of Electrical and Computer Engineering

National Chiao Tung University

Abstract—With the growing popularity of wireless mobile
sensors, automated sensors deployment in a smart sensing envi-
ronment has become practical and feasible. Once the deployment
algorithm determines moving destinations (goals) for all sensors,
however, the problem of how to schedule collision-free moving
paths to reach the goals safely remains largely unaddressed in the
wireless sensor networking (WSN) literature. In this paper, we
propose a collision-free path planning (CFPP) mechanism, based
on geometric formulations and batched movements, to address
the sensors deployment problem. Our proposed CFPP mechanism
ensures 100% sensors goal reachability, which is critical for
most WSN monitoring applications that require sufficient sensing
coverage to operate correctly. Performance results show that our
CFPP outperforms other existing path-planning mechanisms in
terms of computation latency, energy consumption, and sensors
reachability (goals reaching success probability).

Index Terms—Mobile sensors deployment, path planning.

I. BACKGROUND

Wireless sensor networks (WSNs) have been thriving and

attracting significant attention thanks to the advances of micro-

electromechanical system (MEMS), sensing technology, and

wireless communication. A WSN is widely used for habitat

and environmental surveillance, medical application, agricul-

tural assistance, and as solutions to military problems [6], [10],

[14]. For surveillance applications, sufficient sensing coverage

is essential for a WSN to operate successfully. With the

growing prevalence of wireless mobile sensors, automated sen-

sors deployment has become practical and feasible. Once the

deployment algorithm produces moving destinations (goals)

for all sensors, however, the problem of how to schedule

moving paths to reach the goals without collisions remains

largely neglected in the sensor networking field.

Traditional path-planning methods in the area of multi-

robot systems can be generally classified into three categories:

roadmap-based, performing cell decomposition, and applying

the concept of artificial potential field, according to the authors

in [5], [13]. The roadmap-based methods construct visibility

graphs to assist in the path-planning process [15]–[17], in

which the resultant moving paths may touch (fixed) obstacles

at the vertices or even edges that are considered unsafe. To

address this drawback, approaches based on cell decomposi-

tion by computing Voronoi diagrams have been introduced to

⋆Corresponding author (E-mail: ting@cm.nctu.edu.tw).
†This research was co-sponsored in part by the Ministry of Science and

Technology (MOST) of Taiwan under grant number 103-2221-E-009-016 and
in part by the Delta-NCTU Cooperation Project.

perform path scheduling in a more precise way at the cost

of increased computation latency [5]. The third category of

path-planning approaches models the obstacles and targets as

electrostatic charges interacting with each other, creating a

potential field [18]–[20]. The obstacle exerts a repulsive force

while the target location has an attractive effect on the robot

position. This method enables path planning to be completed

in real time. However, as only local properties are consid-

ered, the robots may get trapped at local minima or aimless

oscillation without reaching their goals. The aforementioned

approaches assume one or more fixed obstacles in a multi-

robot system, which differs from our mobile sensor networking

scene. In this paper, we investigate a sensing system where all

sensors are mobile and considered as dynamic objects (rather

than fixed obstacles).

Two more closely related path-planning methods to our en-

visioned scenario that also deal with dynamic objects include

ADO [7] and Super A* [12]. In ADO, all robots are prioritized

and equipped with omnidirectional cameras (visual sensors) to

perform real-time path-planning computations. ADO suffers

from the deadlock problem in which some robots are unable

to reach their destinations (goal positions). In addition, extra

(non-negligible) energy consumption is required due to the

constant usage of visual sensors for path calculations in

ADO. On the other hand, Super A* modifies the classical

A* search algorithm [9] by taking environmental changes into

account while robots move. Super A* successfully resolves

some deadlock cases that ADO fails to handle. However, the

triangular deadlock problem in ADO remains unsolved in

Super A*. Moreover, extensive computation latency is required

in Super A* due to the high time-complexity nature of the A*

search algorithm.

In this paper, we regard all sensors as dynamic objects and

propose a collision-free path planning (CFPP) mechanism,

based on geometric formulations and batched movements,

to address the sensors deployment problem. Our proposed

CFPP method incurs little computation latency, moderate

energy consumption, and ensures 100% goal reachability. The

remainder of this paper is organized as follows. Section II

prepares the readers with geometric preliminaries. We present

the CFPP protocol details in Section III. Section IV provides

performance comparisons in terms of computation latency,

energy consumption, and goals reaching success probability.

Finally, we conclude the paper in Section V.

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 6412

ijp
(,)i ijd p p

,()j ijd p p

'

'

() () 0

&&

() () 0

j i j i

i j i j

L p L p

L p L p
'

() 0

&&

() () 0

i j

j i j i

L p

L p L p

'

'

() 0

&&

() () 0

i j

j i j i

L p

L p L p
'

() 0

&&

() () 0

j i

i j i j

L p

L p L p

'

'

() 0

&&

() () 0

j i

i j i j

L p

L p L p

j ijp p

ip

'

ip

'

jp
ip

'

ip
'

jp

jp

'

j ijp p

ip

'

ip

jp

jp

i ijp p

'

jp
'

ip

jp
'

i ijp p

'

jpip

Fig. 1. Possible intersection (collision) cases generated by moving paths of
any two sensors si and sj , where pi (pj) denotes the original position of si

(sj) and p
′

i (p
′

j) indicates the physical movement destination for sensor si
(sj).

II. PRELIMINARIES

In this paper, we assume the sensor volume is neglected and

regarded as a moving point on a 2D plane, while every moving

path (performed by a sensor) regarded as a line. Suppose no

two moving paths share the same line (i.e., no path lies in the

sub-path of another). We identify the collision cases based on

the following geometric theorem.

Theorem 1. With respect to the line ax + by + c = 0 on a

2D plane, points Q1(x1, y1) and Q2(x2, y2) fall in the same

side if (ax1+ by1+ c)(ax2+ by2+ c) > 0, in different sides if

(ax1+by1+c)(ax2+by2+c) < 0, while one or both reside(s)

exactly on the line if (ax1 + by1 + c)(ax2 + by2 + c) = 0.

For an arbitrary sensor si departing from point pi (with

coordinate (xi, yi)) to point p
′

i (with coordinate (x
′

i, y
′

i)),

the moving path can be formulated as a line, denoted as Li.

Similarly, the moving path of another sensor sj is given as

Lj . Define pij as the intersection point of lines Li and Lj ,

which can be easily obtained by solving the two line equations.

According to Theorem 1, we can now classify five possible

intersection (collision) cases for any two sensors si and sj , as

illustrated in Fig. 1, where d(pi, pij) and d(pj , pij) represent

the Euclidean distances from pi to pij and from pj to pij . Case

I shows the case in which points pi and p
′

i fall in different

sides of line Lj , whereas points pj and p
′

j fall in different

sides of line Li as well. In Case II, the departure point pj of

sensor sj gets in the way of the moving path of si, while in

Case IV, on the contrary, the departure point pi of sensor si
blocks the moving path of sj . Case III draws the condition in

which the destination point p
′

j of sensor sj lies on the moving

path of si, whereas Case V, on the opposite side, displays

the condition that destination point p
′

i of sensor si falls on the

moving path of sj .

III. COLLISION-FREE PATH PLANNING (CFPP)

In practical sensors deployment, a collision-free moving

path scheduling is essential, so that mobile sensors can reach

their destinations without colliding with each other. However,

the scheduling strategy is non-trivial since various collision

cases need be systematically classified and handled/resolved

in different ways.

A. Path Planning Strategy

Given the five potential collision (intersection) cases caused

by any two moving paths, we establish a colliding set Ci,

which includes all sensors whose moving paths intersect with

that of si, for each sensor. Instead of performing one-time

physical movements, we propose to use batched movements

such that the scheduling complexity can be reduced at the

expenses of increased moving latency. Define orderi as the

cardinality of set Ci (orderi = |Ci|) for sensor si, indicating

its moving order. We start from performing movements for

sensors with the least order value. All sensors with the

currently least (smallest) order value are contained in set

Mmin order. Intuitively, sensors with order value of zero can

move simultaneously since no other sensors pose potential

colliding sources to them. For any sensor si with non-zero

orderi value, potential colliding conditions (on per node-pair

basis) caused by all members in its Ci set should be analyzed

and handled case by case. Specifically, all sensors are divided

into moving groups (batches) based on their order values and

processed round by round (batch by batch). Sensors in set

Mmin order are evaluated in the same round. The evaluation

and processing details will be provided later in this section.

After the evaluations, a subset of Mmin order (or probably the

whole Mmin order set) is determined and all sensors included

in the subset are allowed to move simultaneously in the current

round. For sensor si that has been evaluated and permitted to

move, the tf lagi is set true, indicating its moving intention.

Once the physical movement has been successfully performed

by sensor si, moving flag mflagi is set true and si is removed

from the consideration list. All order values for the remaining

sensors (physical movements not performed yet) should be

refreshed, and the batched scheduling procedure starts over

accordingly.

Now, we elaborate on the evaluation procedures for deter-

mining a set of movable sensors in a single round (batch).

Based on the idea of batched movements, we regard all sensors

with the currently minimum order value as a potential moving

batch and include them in set Mmin order. We then analyze

all members in set Mmin order one by one to determine their

moving possibilities. In our design, we start the evaluation

from sensor with the smallest ID, say s1, and identify all

possible collision cases caused by members in its colliding

set C1. For any two sensors si and sj with moving orders

orderi and orderj , the previously five collision cases can be

further classified into ten cases according to the relationship of

orderi and orderj . Suppose si ∈ Mmin order, sj ∈ Ci, and

orderi = orderj , we term the five collision cases as Case S-I,

Case S-II, Case S-III, Case S-IV, and Case S-V, where ’S’

indicates that sensors si and sj are potentially scheduled to

move in the ”same” round due to equal order value. On the

other hand, if orderi < orderj (note that orderi > orderj
is not possible since si ∈ Mmin order), we define another

five collision cases as Case D-I, Case D-II, Case D-III,

Case D-IV, and Case D-V, where ’D’ means si and sj are

potentially scheduled to move in ”different” rounds due to

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

6413

their unequal order values. In each potential collision case, on

detecting a colliding possibility, si tries to resolve the collision

by adjusting/prolonging the waiting time Tj or increasing the

moving speed Vj of sensor sj . Originally all waiting times are

set to zero, and moving speeds all set at a constant velocity

V . If the adjustment (on either waiting time or moving speed)

is successful, the colliding possibility is eliminated and si
moves on to evaluate collision cases with other members

in Ci. To avoid repeated adjustments on a single sensor, in

our design, each sensor is allowed to be adjusted (either on

waiting time or moving velocity) once. In addition, si itself

cannot be adjusted by other sensors in set Mmin order that

are evaluated after it, if si is indeed scheduled to move in the

current round. We keep track of the adjustment possibility for

sensor si by the dirtyi bit, implying adjustable if set false

and not adjustable if set true. When si intends to resolve a

collision by adjusting another sensor with dirty bit set true,

the adjustment is prohibited and si is not allowed to move

in the current round (tf lagi set to false), since the collision

remains. Only when all members in Ci with various colliding

possibilities are all resolved can sensor si be included into the

movable set and perform physical movement. Upon receiving

the moving instruction from the clusterhead, si waits for Ti

(possibly adjusted) and then moves with speed Vi (possibly

adjusted). In our route scheduling strategy, we try to include

as many sensors as possible to move simultaneously in the

same round (batch).

For each of the ten collision cases identified, we define

corresponding actions (Action D-I, Action D-II, · · · , Action

S-I, Action S-II, · · ·) to evaluate respective case and perform

necessary adjustments. If colliding possibility remains due to

unsuccessful adjustment, physical movement by sensor si is

not allowed and should be deferred. Thus we additionally

define Action Deferred to perform corresponding operations.

Note that in Case D-I, Case D-III, and Case D-IV, no

action is needed since si and sj are scheduled in different

rounds (no collision is likely to happen in the three cases

despite intersection exists between the two moving paths). For

the rest of seven cases, we describe the evaluation principles

exercised by respective action as follows (detailed operations

are available in Algorithm 1, Section III-B).

Action D-II In this case, since sj gets in the way of si’s

moving path, the clusterhead instructs sj to slightly adjust its

location along line
−−→
pjp

′

j to avoid collision. Assume the location

adjustment is small enough to have no effect on other moving

paths.

Action D-V Sensor si is not allowed to move, for its

destination point p
′

i will block the moving path of sj in a

later round. In this case, the moving order of si should be set

to be larger than that of sj (orderi = orderj +1) to postpone

si’s physical movement after sj . In addition, a fix orderi
flag should be set true, indicating no updates on orderi will

be performed in later rounds to ensure the delayed movement

after sj , and then Action Deferred is invoked for si.

Action S-I Define the traveling time from pi to the inter-

section point pij as tpi→pij
(obtained from available d(pi, pij)

and Vi), the clusterhead evaluates if Ti + tpi→pij
= Tj +

tpj→pij
, where Ti and Tj are the waiting times of si and sj as

defined earlier. If equality holds, a collision at the intersection

is expected, and the waiting time Tj of sj should be increased

by a small amount of ∆t to avoid the collision. However, in

case sj has already been processed with dirtyj set true, the

adjustment is prohibited and si is not allowed to move in the

current round. Consequently, moving order of si is increased

(orderi = orderi+1) and Action Deferred is invoked for si.

Action S-II If si reaches the intersection point pij no later

than sj’s departure time, the clusterhead should instruct sj to

slightly adjust its location along line
−−→
pjp

′

j to avoid collision.

Action S-III If sj reaches the intersection point pij no

later than si, the destination point p
′

j of sj will block the

moving path of si. In this case, the clusterhead should instruct

sj to increase its waiting time Tj by setting Tj = Ti +
(tpi→pij

− tpj→pij
) + ∆t to ensure the delayed arrival of sj

at pij (p
′

j). If the adjustment of Tj is not successful due to

a true flag of dirtyj , then sj is not allowed to move in the

current round. Consequently, moving order of sj is increased

(orderj = orderj + 1) and Action Deferred is invoked for

sj .

Action S-IV If sj reaches the intersection point pij no later

than si’s departure time, the clusterhead should increase the

waiting time of sj by setting Tj = Ti− tpj→pij
+∆t. In case

the adjustment is not allowed due to a true value of dirtyj ,

the clusterhead instructs si to slightly adjust its location along

line
−−→
pip

′

i to avoid collision.

Action S-V If si reaches the intersection point pij no

later than sj , the destination point p
′

i of si will block the

moving path of sj . In this case, the clusterhead should

instruct sj to increase its moving speed Vj by setting Vj =
Vi·d(pj ,pij)

d(pi,pij)+Vi(Ti−Tj)
+ ∆v, where ∆v is a small amount of

speed increment to ensure sj’s earlier arrival at pij (p
′

i) than

si. However, if the adjusted Vj is larger than the maximum

possible moving speed Vmax or the adjustment of Vj is

prohibited due to a true value of dirtyj , then si is not allowed

to move in the current round. Moving order of si is increased

(orderi = orderi+1) and Action Deferred is invoked for si.

Action Deferred Since si (sj) is not allowed to move in the

current round, tf lagi (tf lagj) is set false. In addition, the

clusterhead should confirm if this not-moving decision leads

to moving path blocking of any sensor in Mmin order set that

is already allowed to move in the current round (with tf lag set

true), and do necessary slight location adjustment to resolve

the blocking.

Fig. 2 illustrates a snapshot of the CFPP operations. Note

that s4 has more intersections with other sensors, which are

not shown in the figure (omitted for brevity). In the current

round, potential moving set Mmin order includes s1, s2, and

s3, all having the currently smallest order value of 3. For

s1, colliding conditions caused by all members in C1 are

analyzed and handled case by case. In this example, since s1
and s2 are evaluated to reach intersection p12 simultaneously,

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

6414

1p

'
2p

3p

'
1p

2 23()p p

'
3 34()p p

4 24()p p

'
4p

is

1s

2s

3s

4s

iC

2 3 4(S I), (S III), (D I)s s s

1 3 4(S I), (S IV), (D II)s s s

1 2 4(S V), (S II), (D V)s s s

1 2 3(D I), (D IV), (D III)s s s

iorder

3

3

3

5

1 2
Moving set = { , }s s

min_ order 1 2 3
M = { , , }s s s

_ ifix order
idirty itflag

imflag

00

0

0

0

0

0

0

0

is

1s

2s

3s

4s

iC

4 (D V)s

3(D III)s

iorder

3

6

idirty itflag
imflag

1

1

00 0

0

1

1

12p

1

0

1

1

_ ifix order

'
2p

3p

'
1p

'

3 13 34()p p p

4
()p adjusted

'
4p

4
()p original

0

00

(a) Before moving

(b) After moving

Fig. 2. Every sensor si in the potential moving set Mmin order should
be analyzed by identifying its intersection (collision) relationship with each
member in Ci, in which intersection cases D-II, D-IV, S-I, S-II, S-III, S-IV,
and S-V require further consideration/processing, before including si into the
moving set (allowed to move in the current round).

the clusterhead adjusts the waiting time of s2 by setting

T2 = T2+∆t to resolve the collision. Next, since s3 is found

to reach intersection p13 earlier than s1, blocking s1’s moving

path, the clusterhead instructs s3 to increase its waiting time

by setting T3 = T1 + (tp1→p13 − tp3→p13) + ∆t. As to s4
(scheduled to move in a later round), no action is required

since no collision is likely to happen between s1 and s4.

Consequently, the clusterhead includes s1 into the moving

set. Similar operations apply to s2. In our example, s2 has

no colliding possibilities with s1 and s3. However, since the

departure location p4 of s4 blocks s2’s moving path, the

clusterhead instructs s4 to slightly move from p4 (original)

to p4 (adjusted), as shown in Fig. 2 (b). As a result, s2 is also

included into the moving set. For s3, in our example, both

s1 and s2 do not pose colliding sources to s3. Unfortunately,

since the destination point p
′

3 of s3 will block the moving

path of s4 in a future round, s3 is not allowed to move before

s4 (not included into the moving set), and order3 should be

updated to 6 (order4+1) with fix order3 set true. After the

evaluations, sensors included in the moving set (i.e., s1 and

s2) perform physical movements simultaneously, and order4
and set C4 are updated accordingly.

B. CFPP Algorithm Summary

TABLE I
SUMMARY OF NOTATIONS USED IN THE CFPP ALGORITHM

Notation Description

Ci Set of potential colliding sensors against si
orderi Moving order of si, where orderi = |Ci|

fix orderi Indicates the order value of si is henceforth fixed

dirtyi Indicates whether si has been processed in the current round

tflagi Indicates whether si is allowed to move in the current round

mflagi Indicates whether si has moved from pi to p
′

i

Mmin order Set of sensors with minimum order value in current round

Table I summarizes the notations used in CFPP, and Algo-

rithm 1 provides the pseudocode for CFPP operations.

Algorithm 1 Collision-free Path Planning (CFPP)

include all sensors in set S;
establish set Ci for ∀si ∈ S ; // i = 1, · · · , k
evaluate orderi for ∀si ∈ S;
clear fix orderi, dirtyi, tflagi , mflagi for ∀si ∈ S; // all set to false

while (S !empty) do
re-establish set Ci for ∀si ∈ S;

re-evaluate orderi for ∀si ∈ S with fix orderi == false;

reset Ti = 0, Vi = V, dirtyi = false, tflagi = false for ∀si ∈ S;

include all si with the minimum orderi value into the Mmin order set;

for (each si ∈ Mmin order) do
set tflagi = true;
for (each sj ∈ Ci) do

classify the intersection (collision) case for si and sj ;
switch (case)

Case D-II: do Action D-II;
Case D-V: do Action D-V;
Case S-I: do Action S-I;
Case S-II: do Action S-II;
Case S-III: do Action S-III;
Case S-IV: do Action S-IV;
Case S-V: do Action S-V;

end for
end for
perform simultaneous physical movements for ∀si with tflagi == true;

set mflagi = true for such sensor si; // physical movement performed

remove all si with mflagi == true from sensors set S;

end while
procedure Action D-II

slightly adjust location of sj from pj (original) to pj (adjusted);
procedure Action D-V

set orderi = orderj + 1; set fix orderi = true;
invoke Action Deferred (si);

procedure Action S-I
if Ti + tpi→pij = Tj + tpj→pij then

if dirtyj == false then set Tj = Tj + ∆t; dirtyj = true;

else set orderi = orderi + 1; invoke Action Deferred (si);

procedure Action S-II
if Ti + tpi→pij ≤ Tj then
slightly adjust location of sj from pj (original) to pj (adjusted);

procedure Action S-III
if Ti + tpi→pij ≥ Tj + tpj→pij then

if dirtyj == false then
set Tj = Ti + (tpi→pij

− tpj→pij
) +∆t; set dirtyj = true;

else set orderj = orderj + 1; invoke Action Deferred (sj);

procedure Action S-IV
if Ti ≥ Tj + tpj→pij then

if dirtyj == false then
set Tj = Ti − tpj→pij

+ ∆t; set dirtyj = true;

else slightly adjust location of si from pi (original) to pi (adjusted);

procedure Action S-V
if Ti + tpi→pij ≤ Tj + tpj→pij then

if dirtyj == false then

set Vj =
Vid(pj,pij)

d(pi,pij)+Vi(Ti−Tj)
+ ∆v; set dirtyj = true;

if Vj > Vmax then
set orderi = orderi + 1; invoke Action Deferred (si);

else set orderi = orderi + 1; invoke Action Deferred (si);

procedure Action Deferred (si)
set tflagi = false;

do necessary slight adjustment of si’s departure location to resolve

moving path blocking possibly caused by this not-moving decision;

IV. PERFORMANCE EVALUATION

In this section, we validate our CFPP mechanism by com-

paring the performance with two other path-planning ap-

proaches: ADO (introduced in [7]) and Super A* (introduced

in [12]). Fig. 3 illustrates a monitored 200 × 200 area with

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

6415

1

1'

2
2' 3

3'

4

4'

5

5'

6

6'

7

7'

8
8'9

9'10 10'

1111'

12

12'

13

13'

14

14'

15

15'

16

16'

17 17'
18 18'

19

19'

20

20'

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

y
 a

x
is

 (
g
ri

d
 u

n
it

)

x axis (grid unit)

Fig. 3. Random path configuration in a monitored 200 × 200 area with
sensors population up to 20 (here i represents the departure position of sensor

si whereas i
′

indicates the destination (goal) position of si.

up to 20 randomly configured moving paths. We observe the

computation latency and energy consumption incurred by the

three approaches. As shown in Fig. 4, both CFPP and ADO

manifest little computation latency, while Super A* requires

significantly longer time to compute path-planning solutions.

Moreover, computation latency with Super A* increases dras-

tically as number of mobile sensors (moving paths) grows.

To model the moving energy, we estimate the energy

consumed by the motion device moving for one grid unit

by performing real measurements on the sensor robot used

in our implementation testbed with grid size equal to 1 cm.

The robot assembles six 1.2 V 2000 mAh rechargeable NiMH

batteries with measured 200 ∼ 290 mA moving current

and average moving speed at 0.06 m/sec. Consequently, the

average moving energy consumption per grid (unit distance)

can be obtained by 0.29 × 7.2 × (0.010.06) = 0.348 Joule. We

then compute the total moving energy consumption based on

the traveling distance accordingly [11]. To model the energy

consumed by visual sensors (cameras) in ADO (recall that

ADO algorithm depends on the presence of omnidirectional

cameras for calculating moving paths, as described in Sec-

tion I), we perform measurements on a commercial video

camera M30 Series [1]. An estimated 3.4 Watt at average

(ranging from 2.2 to 4.6 Watt) facilitates our calculation of the

total camera energy required by an individual sensor in ADO,

which can be obtained by 3.4 × moving time (sec) Joule.

Fig. 4 displays the aggregate energy consumption for CFPP,

ADO, and Super A* respectively. Our CFPP mechanism con-

sumes the least aggregate energy among three, whereas ADO

produces the most power cost due to extra energy consumed

by visual sensors (omnidirectional cameras). Meanwhile, since

the generated Super A* paths are not always in straight lines

(shortest paths), Super A* consumes more moving energy as

compared to our CFPP.

In order to observe the capability of path-planning algo-

rithms on resolving deadlocks, we add potential deadlock

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

1400

1600

1800

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o
m

p
u

ta
ti

o
n
 L

at
en

cy
 (

se
c)

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

Jo
u

le
)

Number of Wireless Mobile Sensors

Fig. 4. Computation latency and energy consumption incurred by CFPP,
ADO, and Super A* path-planning strategies under various amounts of sensor
nodes in a monitored 200× 200 area.

situations as mentioned in [8]1. Fig. 5 depicts a new con-

figuration consisting of 20 random moving paths with three

deadlock situations. Potential deadlocks #1 and #2 simulate the

situation when a goal position blocks another sensor’s moving

path, whereas potential deadlock #3 demonstrates a triangular

deadlock situation, in which all involved sensors are prevented

from moving.

Fig. 6 shows the sensors goal reachability accomplished by

CFPP, ADO, and Super A* as time advances. We observe

that ADO suffers from deadlocks #1 and #3 at time 20,

which stop sensors s11, s16, s17, s18 from moving to their

destinations (goals). At time 40, ADO encounters deadlock

#2, which prevents sensor s14 from reaching its goal position.

After time 40, ADO is unable to make any further progress

with eventually 75% final goal reachability. Super A* is

capable of resolving deadlocks #1 and #2, but unable to

handle the triangular deadlock #3, which occurs at time 20

and traps sensors s16, s17, s18 from departing toward their

destinations. Super A* stops making progress after time 40,

leading to 85% final goal reachability. In contrast, our CFPP

is capable of resolving all deadlock situations. For deadlocks

#1 and #2 (classified as Case D-V in our CFPP algorithm),

sensors s4 and s10 execute Action D-V by deferring their

movements (scheduled in a later batch after s11 and s14 reach

their goal positions). For deadlock #3 (a triangular deadlock),

since sensors s16, s17, s18 will be scheduled in the same

moving order, CFPP naturally resolves this deadlock situation

by allowing three sensors to move simultaneously without

blocking each other. Interestingly, CFPP reachability grows

slowly (due to the batched movements applied by CFPP)

and outperforms the other two approaches after time passes

80, yet leads to the highest 100% goal reachability. From

the performance results, we validate our CFPP mechanism’s

capability of successfully guiding 100% of the sensors to

their goal positions without collisions, while incurring little

computation latency and moderate energy consumption.

1Here we define that deadlocks among two or more robots (mobile sensors)
occur if these robots block each other in a way such that any or all of them
is/are unable to continue along its/their trajectory (traveling path) without
causing a collision.

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

6416

1

1'

2

2' 3

3'

4

4'

5

5'

6

6'
7

7'

88'

9

9' 10
10'

11

11'

12

12'

13

13'

14

14'

15

15'

19

19'

20

20'

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

y
 a

x
is

 (
g

ri
d

 u
n

it
)

x axis (grid unit)

blocking path blocked path

potential

deadlock #2

potential

deadlock #1

potential deadlock #3

(triangular deadlock between s16, s17, s18)

Fig. 5. Random path configuration of 20 sensors in a monitored 200× 200
area with potential deadlocks #1, #2, and #3.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

S
en

so
rs

 G
o

al
 R

ea
ch

ab
il

it
y

 (
%

)

Simulation Time (second)

CFPP

ADO

Super A*

deadlock #2

CFPP w/ 100% Reachability

Super A* w/ 85% Reachability

ADO w/ 75% Reachability

deadlock #3

deadlocks #1 and #3

Fig. 6. Sensors goal reachability accomplished by our CFPP, ADO, and
Super A* path-planning strategies with the existence of potential deadlocks
#1 , #2 , and #3 in a monitored 200× 200 area.

We have implemented a proof-of-concept prototype based

on moving robots (LEGO MINDSTORMS NXT 9797 [3])

carrying embedded system boards (Tibbo EM1206EV [4]) to

further corroborate our CFPP protocol feasibility in a real-life

environment. A brief demonstration video on our experiments

is available in [2].

V. CONCLUSION

In this paper, we devise a collision-free path planning

(CFPP) mechanism to schedule moving paths for mobile sen-

sors deployment problem. When sensors move around to self-

deploy, the CFPP algorithm comes into play by systematically

classifying colliding cases and employing batched movements.

Our proposed CFPP guarantees sensors goal reachability and

successfully guides all sensors to their destinations without

causing collisions.

REFERENCES

[1] Axis Communication M30 series. http://tw.axis.com/download/ds
m30series 51497 tw 1304.pdf/.

[2] CFPP demonstration video. http://bunlab.twbbs.org/filezone/index.php?
dir=implement video/thesis video/.

[3] LEGO MINDSTORMS NXT 9797. http://www.lego.com/.

[4] TIBBO Technology. http://tibbo.com/.
[5] P. Bhattacharya and M. L. Gavrilova. ”Roadmap-based Path Planning

Using the Voronoi Diagram for Clearance-based Shortest Path”. IEEE

Robotics and Automation Magazine, 15(2):58–66, June 2008.
[6] E. S. Biagioni and K. W. Bridges. ”The Application of Remote Sensor

Technology to Assist the Recovery of Rare and Endangered Species”.
Int’l Journal of High Performance Computing Applications, 16(3):315–
324, 2002.

[7] C. Cai, C. Yang, Q. Zhu, and Y. Liang. ”Collision Avoidance in Multi-
Robot Systems”. In Proc. IEEE Int’l Conference on Mechatronics and

Automation, pages 2795–2800, August 2007.
[8] M. Jager and B. Nebel. ”Decentralized Collision Avoidance, Deadlock

Detection, and Deadlock Resolution for Multiple Mobile Robots”. In

Proc. IEEE/RSJ Int’l Conference on Intelligent Robots and Systems,
pages 1213–1219, November 2001.

[9] V. Kunchev, L. Jain, V. Ivancevic, and A. Finn. ”Path Planning and
Obstacle Avoidance for Autonomous Mobile Robots: A Review”. In

Proc. Int’l Conference on Knowledge-based Intelligent Information and

Engineering Systems, pages 537–544, October 2006.
[10] T.-Y. Lin, H. A. Santoso, W.-T. Liu, and H.-T. Liu. ”An Enhanced Sensor

Deployment Scheme for Automated Smart Environments”. In Proc.

IEEE Int’l Conference on Advanced Networks and Telecommunications
Systems, pages 1–6, December 2013.

[11] T.-Y. Lin, H. A. Santoso, and K.-R. Wu. ”Global Sensor Deployment
and Local Coverage-aware Recovery Schemes for Smart Environments”.
IEEE Transactions on Mobile Computing, accepted to appear, 2015.

[12] F. Liu and A. Narayanan. ”Real Time Replanning Based on A*
for Collision Avoidance in Multi-Robot Systems”. In Proc. Int’l

Conference on Ubiquitous Robots and Ambient Intelligence, pages 473–
479, November 2011.

[13] B. Mahajan and P. Marbate. ”Literature Review on Path Planning in
Dynamic Environment”. International Journal of Computer Science and

Network, 2(1):115–118, February 2013.
[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson.

”Wireless Sensor Networks for Habitat Monitoring”. In Proc. Int’l

Workshop on Wireless Sensor Networks and Applications (WSNA), pages
88–97, September 2002.

[15] A. N. Nazif, A. Davoodi, and P. Pasquier. ”Multi-agent Area Coverage
Using a Single Query Roadmap: A Swarm Intelligence Approach”.
Advances in Practical Multi-Agent Systems, 325(1):95–112, September
2011.

[16] M. T. Rantanen. ”A Connectivity-based Method for Enhancing Sampling
in Probabilistic Roadmap Planner”. Journal of Intelligent Robotic

Systems, 64(2):161–178, November 2011.
[17] M. T. Rantanen and M. Juhola. ”A Configuration Deactivation Algorithm

for Boosting Probabilistic Roadmap Planning of Robots”. International

Journal of Automation and Computing, 9(2):155–164, September 2011.
[18] E. Rimon and D. E. Koditschek. ”Exact Robot Navigation Using

Artificial Potential Functions”. IEEE Transactions on Robotics and

Automation, 8(5):501–518, August 1992.
[19] P. Song. ”A Potential Field Based Approach to Multirobot Manipulation

General Robotics”. In Proc. IEEE Int’l Conference on Robotics and

Automation, pages 1217–1222, May 2002.
[20] Y. Wang and G. S. Chirikjian. ”A New Potential Field Method for

Robot Path Planning”. In Proc. IEEE Int’l Conference on Robotics and

Automation, pages 977–982, April 2000.

IEEE ICC 2015 - Ad-hoc and Sensor Networking Symposium

6417

