Gradational Power Control in Multi-channel Multi-radio Wireless Ad Hoc Networks[†]

Tzu-Ting Weng, Ting-Yu Lin, and Kun-Ru Wu Department of Communication Engineering National Chiao-Tung University

Abstract— Various power control techniques have been proposed to boost aggregate network throughput by reducing the interference impact and encouraging more concurrent transmissions in medium-shared wireless systems. In this paper, we do not intend to devise new power control mechanisms. Rather, we investigate an interesting problem of how to apply power control techniques in a multichannel networking environment, where every wireless node is equipped with multiple radio transceivers, each statically binding to a dedicated channel. For a single radio transceiver, more reduction on transmit power generally results in lower network connectivity, leading to a longer route (if path exists) for multi-hop communication (bad for end-to-end throughput). On the other hand, small transmit power helps accommodate more concurrent transmitters (good for aggregate throughput). For wireless ad hoc networks with multi-hop communication as the major behavior, how to take both route length and medium utilization into consideration to improve system capacity is thus important. Motivated by this, we propose to apply power control with different connectivity degrees on radio interfaces. Imagine several superposed network topologies having gradational connectivity levels over multiple non-interfering channels, hence the name, gradational power control (abbreviated as GradPC), is given.

In our proposed GradPC protocol, a base channel is designated to use default transmit power (no power control on this radio). For other non-base radios, we adopt neighborbased power control mechanisms to tailor the connectivity degree for each radio channel. After GradPC has successfully configured transmit power for all radios, our other corresponding protocols run in the following two phases: (i) a variant DSR is performed over the base channel to discover a multi-hop route, and (ii) once the route is ready, a radio selection procedure is activated to judiciously schedule the next link-layer packet sent over an appropriate channel. Simulation results demonstrate that the proposed GradPC along with its corresponding protocols outperform strategies with no power control and the same connected topology, by imposing gradational power levels on radios to balance the requirements for short route and high medium utilization.

I. INTRODUCTION

Researchers in the wireless networking community have been working diligently to expand observable system throughput for bandwidth-hungry applications. In [8], the authors analyze the capacity limitations of wireless networks from the perspective of information theory. Two types of networks are studied: arbitrary and random networks. Their analysis concludes that (1) the capacity (measured by the number of bits transmitted for unit distance in unit time) of an arbitrary network is of order $\Theta(\sqrt{n})$, where *n* is the node density, while (2) the random network has a capacity of $\Theta(\sqrt{\frac{n}{\log n}})$. Based on the results, however, authors in [12] discover the capacity of a practical wireless 802.11 ad hoc network is remarkably below the theoretical bound. They observe that, without an optimal communication schedule, the 802.11 MAC throughput falls significantly short of the optimal capacity, due to either misinterpreting the link idleness or generating too much local collision. An optimal communication schedule, if not impossible, is difficult to carry out especially in distributed ad hoc networks where stations operate independently without central coordination. While cross-layer interaction is essential, some research works investigate other capacitycontrolling parameters. One such alternative is power control. In the literature, a number of power control techniques have been proposed [3,7,9,13,15–18,20,21]. Power control directly affects the network connected topology (indirectly influencing the communication paths/schedules), and is generally interpreted as a means of alleviating interference impact because of reduced node degree (number of neighbors connected). In contrast to the previous argument, authors in [5] define a new notion of interference as the number of nodes being affected by communication over a certain link. Based on this new definition, they prove that low node degree does not necessarily translate to low interference. Two minimum spanning tree (MST) algorithms are thus proposed to produce interference-optimal topologies. However, in a later work [2] considering multihop communications, the authors oppose the MST-based topology constructions and prove that those "interferenceoptimal" topologies can perform badly from the viewpoint of multi-hop interference. We also observe, from our experiments (reported in Section III), that power control surprisingly does not bring performance benefit for multi-hop traffic (actually performance hurt by power control compared to the case using default transmit power), partially due to the complicate multi-hop interference and partially the longer route resulted from power control. In this paper, we do not intend to propose new power control techniques. Instead, we investigate how to effectively apply a neighborbased power control protocol in a multi-channel network to improve the multi-hop throughput.

Another capacity-controlling parameter is the wireless channel. Utilizing multiple non-overlapping radio channels is such an approach to improving system throughput by providing extra flowing pipes for communication packets without mutually interfering. The capacity benefit of equipping every wireless station with multiple radio interfaces, which operate over separate non-interfering channels,

[†] This research was co-sponsored in part by the NSC of Taiwan under grant number 97-2221-E-009-055-MY2, and in part by the MoE Program Aiming for the Top University and Elite Research Center Development Plan (ATU Plan).

is understandable, at the expense of hardware cost. As the price of radio modules steadily goes down, the cost of installing multiple wireless network cards (NICs) has been considered feasible. In [11], the authors suggest to equip each node with two radio transceivers, one is fixed on a certain channel, while the other is made switchable between the rest of channels. According to the authors, the strategies of binding network interfaces to radio channels can be classified as static, dynamic, and hybrid. Static binding assigns each interface to a channel permanently or for a long time period, whereas dynamic binding allows an interface to frequently switch channels from one to another. Hybrid binding is realized by applying static binding for some interfaces and dynamic binding for other interfaces. Frequent switching from channel to channel at a radio interface may result in undesirable network partition and the multi-channel hidden-terminal problem. The multi-channel hidden-terminal problem leads to unnecessary collisions, because the channel status cannot be monitored continuously and precisely due to channel switching. In this paper, we adopt the static binding for all radio interfaces.

Instead of studying the above power and channel factors separately, we consider the pros and cons of power control mechanisms, and propose a gradational power controlling (GradPC) method over multiple non-overlapping wireless radio channels (channel diversity). The concept of GradPC is illustrated in Fig. 1. Suppose an imaginary railway system (as shown in Fig. 1(a)) has three passenger routes (all with the same train speed). The least crowded route has the shortest waiting queue, but with the most stops to drop and reload passengers. On the other extreme, the most crowded route has the longest waiting queue, but wasting the least time to stop for passengers get-on/off. Assume that the route-transfer time within the same stop is negligible. In order for a passenger to plan a trip from Stop A to Stop F, taking the least crowded train at Stop A (to avoid long waiting queue), and then making a transfer at Stop B (transfer time assumed to be very small) is perhaps the fastest path. In comparison to our multi-channel networking environment, the three train routes with different congestion levels can be interpreted as three network topologies produced by different degrees of power control. Different power control degrees result in heterogeneous connectivity status (as shown in Fig. 1(b)). By using the minimal transmit power P_{min} , Channel 3 is the least congested (shortest in-line queue of the railway example), but with longer route. On the other hand, Channel 1 is the most congested (longest in-line queue), but route can be much shorter. Also assume the channel switching delay within the same node is insignificant. Consequently, sending packets over Channel 3, and then making a channel switching at node B is likely to be the most efficient routing path under such multi-channel environment. In reality, the train transfer time in the railway system may not possibly be made zero, while in wireless networks, the channel switching delay can be made negligible by equipping each node with multiple radio interfaces

all binding to respective channels. Motivated by this concept, in this paper, we propose to apply power control with different connectivity degrees on radio interfaces. Imagine several superposed network topologies having gradational connectivity levels over multiple non-interfering channels, hence the name, gradational power control (abbreviated as GradPC), is given.

Fig. 1. Illustration of GradPC concept.

The rest of this paper is organized as follow. Section II reviews existing power control techniques and summarizes our contributions. Section III first investigates the impact of power control on a single-channel single-radio grid network capacity. For single-hop communications, due to the improved spatial diversity, system throughput after exercising power control is way better than that using default transmit power. However, for multi-hop traffic, the system performance is reversed, resulting in a much better throughput when using the default transmit power (no power control). This anomalous phenomenon implies that other parameters should also be factored in besides the spatial diversity, in order to improve the system throughput of multi-hop traffic. This motivates us to propose the GradPC and its corresponding protocols to address the multi-hop issues in Section IV. We observe that our GradPC works out the most throughput potential of a multi-channel multiradio grid network in terms of multi-hop performance. In Section V, we apply the GradPC protocol suite in a multichannel multi-radio random node topology, so as to further corroborate the effectiveness of our proposed methodology. Finally, Section VI draws our conclusion and maps out the future work.

II. RELATED WORK

A. Power Control Techniques

Traditional power control techniques aim to balance between energy conservation and network connectivity [3, 7, 9, 13, 15–18, 20, 21]. In this paper, we are more concerned with network connectivity while keeping the interference impact low. We adopt the power control mechanism proposed in [21] (the N-base protocol). According to the authors, [21] was motivated by the classic work in [7] (Theorem VII.3 in [4]). N-base is a neighbor-based power control protocol. The main contributions of [21] include theoretically deriving the number of neighbors that each node should be connected to for the good connectivity of a multi-hop network. The authors conclude that in a network with n randomly deployed nodes, $\Theta(\log n)$ neighbors should be connected (here log indicates natural logarithm with base e), in contrast to the magic number of six. When neighbor number is less than $0.074 \log n$, they prove that the network is asymptotically disconnected with probability one as n increases. When neighbor number is greater than $5.1774 \log n$, then the network is asymptotically connected with probability approaching one as n grows. The critical constant before $\log n$ remains open and unresolved. In this paper, we adopt this N-base protocol as our power control mechanism. In particular, to provide power gradations, we tune the respective radio power so as to connect to less and less neighbors gradually. In our GradPC policy, we use default transmit power over the base channel (without power control). For other non-base channels, we impose gradational power reductions to produce different neighbor connectivity levels based on the N-base protocol (detailed algorithm presented in Section IV-A).

Another perspective taken by power control recently is to improve the spatial diversity. Spatial diversity can be comprehended as medium utilization, and achieved by adjusting power sensitivity [1, 6, 10, 14, 22]. Spatial diversity is generally measured by the spatial reuse factor, which can be affected by tuning either the transmit power level or tuning carrier sense threshold. Higher spatial reuse factor means more concurrent transmitters and usually better system throughput. The objective of power control techniques in this category is to open up more system capacity, while energy saving is only a side benefit.

A comparison report on various power control mechanisms can be found in [19].

B. Our Contribution

Previous works [16, 20] on multi-channel power control studies hold major different objectives and methodologies from ours:

(1) The main purpose of [16,20] is to propose a power control technique with the assistance of one extra channel for control signaling. On the other hand, we do not intend to devise a new power control mechanism. Rather, we attempt to jointly exploit both the power parameter and channel diversity, in order to further improve the multi-hop performance in a wireless ad hoc network.

(2) A dedicated control channel is used by [16, 20] to negotiate an appropriate power level to use via RTS/CTS handshaking on a per-packet basis. On the other hand, all channels are data channels in our work and no power negotiation (RTS/CTS overhead) is necessary, since we adopt a neighbor-based power control protocol to statically configure the power level for each radio.

In our proposed GradPC protocol, a base channel is designated to use default transmit power (no power control on this radio). For non-base radios, we adopt the aforementioned N-base power control mechanisms to tailor the connectivity degree for each radio channel. After GradPC has successfully configured transmit power for all radios, our other corresponding protocols run in the following two phases: (i) a variant DSR is performed over the base channel to discover a multi-hop route, and (ii) once the route is ready, a radio selection procedure is activated to judiciously schedule the next link-layer packet sent over an appropriate channel. Simulation results demonstrate that the proposed GradPC along with its corresponding protocols yield better multi-hop performance than strategies with no power control and the same connected topology, by imposing gradational power levels on radios to balance the requirements for short route and high spatial diversity.

III. SINGLE-CHANNEL SINGLE-RADIO GRID NETWORK

In this section, we omit theoretic analysis due to space limitation, and report our experiments in the ns-2 simulator to identify the harmful effect caused by power control for multi-hop traffic. We use the IEEE 802.11b wireless module with link rate of 11 Mbps. RTS/CTS handshaking is disabled. All nodes are uniformly deployed in an area of 220×220 sq. meters. As shown in Fig. 2, both singlehop and multi-hop traffic are generated for grid networks of 9, 25, and 49 nodes. To avoid the corner effect which may bias the results, we actually generate more nodes and traffic flows so that the corner nodes can have the same surroundings as the central nodes. Simulation statistics are obtained from the central 9, 25, and 49 nodes of the network. In Fig. 3(a), **Default** indicates the method with no power control (using default transmit power), whereas N-base means the method that applies N-base protocol. We observe that for single-hop traffic (Fig. 2(a)), N-base performs much better especially in dense networks. This is because more spatial diversity is achieved by N-base. Note that in our grid examples, due to the equal distance between four closest neighbors, in our simulations, the number of connected neighbors after N-base power control is always four. The reason is the logarithms of 9, 25, and 44 are all less than four, and in grid topology, a node will connect to zero neighbor if power is reduced to connect to less than four neighbors (i.e., $\log n = 4$ for all three node densities).

Fig. 3(a) reveals that power control seems to yield better system throughput by bringing more spatial diversity (enabling multiple concurrent communications). However, as shown in Fig. 3(b), the N-base method performs poorly for the multi-hop traffic in terms of system throughput. This erratic phenomenon suggests that the spatial diversity advantage of power control no longer dominates the performance for multi-hop traffic. In contrast, complicate inter-hop interference and lengthened packet route affect the multi-hop performance in a bad way. Motivated by this observation, we seek to balance the pros and cons of power control for multi-hop traffic with the assistance of using multiple wireless radio channels.

IV. Multi-channel Multi-radio Grid Network

Consider a grid network with I radio interfaces at each node, running over C non-interfering channels, where $I \leq$

(b) Multi-hop traffic

Fig. 2. The single-channel single-radio grid network with 9, 25, and 49 nodes respectively.

Fig. 3. System throughput for (a) single-hop and (b) multi-hop traffic in a single-channel single-radio grid network.

C. In case I < C, a common subset (with size I) of C channels will be selected so that every node uses the same channel set to configure channels for its I radios. We are interested in improving the system performance with multihop communications. To this end, we first propose our GradPC framework in Section IV-A, and then report the performance results via simulations in Section IV-B.

A. Gradational Power Control Protocol (GradPC)

The design rationale behind the GradPC protocol is to impose power gradations on radios equipped at each node, so as to provide flexibility of balancing the contradicting factors, such as route length and spatial diversity, for multihop traffic performance. In the proposed GradPC framework, a base channel is designated to always use the default transmit power P_{tr} (no power control on this radio). In this way, the route can be kept short, and network connectivity can be preserved despite performing power reductions on the other non-base radios. Define the neighbor table (set) established over base channel as N_{base} , and n denotes the cardinality of set N_{base} (size of neighbor nodes over base channel). Parameter n can be easily obtained by implementing heart-beat message (e.g., HELLO) exchanging mechanisms at each node. Consequently, nodes can estimate their respective n values by periodically exchanging HELLO messages over the base channel. In addition, the base channel is responsible for finding packet routes due to its high network connectivity. In the current GradPC

framework, we adopt a variant of DSR routing mechanism, which always gathers three possible routes and then randomly chooses one. In contrast to favoring the shortest route in default DSR, the selected route in our GradPC protocol may not be the shortest. Generally speaking, the shortest route comes with longer traveling distance between hops. In order to support long transmitting distance, high transmit power should be used. As a result, we observe that in many cases, default transmit power is necessary to support the route discovered by default DSR over the base channel. On the other extreme, we may choose the longest route, which produces short traveling distance between hops. In this case, the required power level can be reduced, but the end-to-end throughput may suffer due to many unnecessary relays. The above observations motivate us to adapt the DSR protocol. Our objective is to determine a moderate route path which has mixed short and long hops. Such route provides us flexibility of scheduling different channels and power levels to be used between hops.

Algorithm 1 GradPC procedure: power adaptation policy for respective radio interface at each node

```
I \leftarrow Number of interfaces
1:
2:
    i \leftarrow 1 // interface index
3:
    a_1 \leftarrow n // n obtained from Algorithm 1
    while i \leq I do

P_t^i \leftarrow P(a_i) // power adjustment function for radio i to
4:
5:
           connect to a_i neighbors
6:
           Establish neighbor table N_i
7:
           if a_i \geq e then
8:
                 i = i + 1
9:
                 a_i \leftarrow \lceil log(a_{i-1}) \rceil
10:
           else
                 i = i + 1
11:
12:
                 a_i \leftarrow a_{i-1}
13:
           end if
14: end while
```

Algorithm 2 Interface selection procedure: data will be sent over the selected radio

```
if First hop then
1:
2:
         i \leftarrow I // initial interface index
3:
         i \leftarrow f_I(Ch_{pre\_hop} - 1)
4:
    end if
5:
6:
    while i > 0 do
7:
         if Next hop found in N_i then
8:
              Data sent over radio i
<u>و</u>
         else
10:
              i = i - 1
11:
         end if
12: end while
      / next hop unreachable
13: Re-discover route on base channel
```

For non-base radios, our GradPC adopts the N-base protocol as the power control mechanism. Specifically, once n is obtained from the base channel, the GradPC procedure reduces power levels gradationally so that the connectivity degrees for non-base channels become less and less. After GradPC procedure is done, the transmit power level P_t^i that should be used by radio i is obtained. Then each non-base radio should perform the heart-beat message exchanging function to establish the neighbor table (set) N_i

for radio interface *i*. Note that when tuning the power level for a non-base radio, we follow the ns-2 setting which divides power into ten levels ranging from 1mW to 100mW. That is, power is reduced by 10mW at a time until the number of connected neighbors satisfies the desirable number. Once the power levels have been determined for all radios, and route is ready, an interface scheduling procedure is performed to schedule the next packet to be sent over an appropriate channel (radio). Given a packet route, we consider both channel diversity between hops and spatial reuse factor resulted from power control. Generally, the radio interface with the lowest transmit power is preferred, suppose the next hop is reachable using this transmit power. In addition, to provide channel diversity between hops, we propose to circulate the channel assignment by avoiding the channel used by the previous hop. Define Ch_{pre_hop} as the channel ID used by the previous hop. Each node sets the initial channel ID to be considered as $f_I(Ch_{pre_hop}-1)$, where f_I is a circulation function, so that the function value always takes on some integer between [1, I]. This mechanism does provide certain channel diversity between hops, but do not guarantee absolute diversity. We provide the pseudo-codes for the power adaptation and interface selection procedures below to show the internal operations of the GradPC protocol.

B. Performance Evaluation

In this section, we extend the ns-2 code to support multi-channel multi-radio environment. We use the 3 nonoverlapping channels (numbering as channel 1, 2, and 3) in IEEE 802.11b, and install 3 radio interfaces at each node. Channel 1 is designated as the base channel. The same ns-2 parameters and network topologies (Fig. 2) are used in our simulations. We investigate the system throughput of multi-hop flows (Fig. 2(b)) for three approaches: GradPC, N-base, and Default. All three approaches use 3 non-overlapping channels and 3 radio interfaces at each node. Default indicates the method of using default transmit power for all three radios, whereas N-base denotes the approach of applying the same power level to connect to $\log n$ neighbors for all three radios. Since there is no interface scheduling mechanism specified for Default and Nbase, in order not to take advantage of them in this regard, we implement the same interface scheduling algorithm as GradPC in Default and N-base. For routing strategy, Default and N-base use the shortest routes found by DSR using their respective power levels, while GradPC use routes randomly chosen from the first three routes discovered by DSR (explained previously in Section IV-A).

Fig. 4(a) plots the system throughput of multi-hop traffic flows (generated as in Fig. 2(b)). With the assistance of channel diversity, the performance of Default and N-base is comparable, in contrast to the sharp performance degradation produced by N-base as previously shown in Fig. 3(b) when C = 1 (single-channel environment). From Fig. 4(a), we observe that our GradPC performs the best especially for dense networks. To get a better understanding of the impact on multi-hop traffic performance, we give another

Fig. 4. Multi-hop traffic performance in a multi-channel multi-radio grid network.

set of statistics in Fig. 4(b), which shows the system performance of a dense grid network (49 nodes) as the number of multi-hop flows increases. As we can see from this figure, when C = 1 (single-channel system), no power control is suggested in terms of better multi-hop traffic performance. When C = 3 (multi-channel environment), interestingly, N-base is not always worse than Default. For environments with very light and very heavy loads (2 and 7 flows), Nbase even performs better than Default. We extrapolate from the results that both route length and medium utilization (spatial diversity) play an important role for multihop traffic performance. Our GradPC outperforms other mechanisms in all cases especially when traffic load is heavy (7 flows).

Table I summarizes the hop count information for the three methods. Our GradPC uses the routes with moderate lengths (neither the shortest nor the longest) in order to preserve both the advantage of power control (increased spatial reuse factor) and channel diversity (decreased interhop interference), hence explains the good performance in Fig. 4.

 TABLE I

 Hop count statistics in a 49-node grid network

	GradPC	N-base	Default
Total # hops	28	42	14
Avg. # hops	4	6	2

V. Applying GradPC in Multi-channel Multi-radio Random Topology

We set up a multi-channel multi-radio network with 50 nodes randomly deployed and randomly generate 7 multi-hop flows, as shown in Fig. 5(a). Three 802.11b non-overlapping channels are used. The three network topologies produced by our GradPC are illustrated in Fig. 5(b)(c)(d) respectively. One more method, BI-CONN, is implemented for providing another power control alternative besides N-base. The BICONN protocol is a power control mechanism proposed by [18]. With multiple channels, BICONN applies the same power reduction for all radios (as the N-base does). We create CBR traffic and increase the sending rate to 11M bps. Fig. 6 shows the multi-hop system throughput for different methods as simulation time advances. From this figure, we observe that our GradPC outperforms other methods, and has the highest saturated throughput. Table II provides the hop count information for all methods. In this case, our GradPC happens to have the same hop count as Default. Nonetheless,

Fig. 5. Illustration of node and flow distributions, along with the connected network topologies using GradPC over three channels.

since GradPC imposes power gradations on radios, while Default applies the same default transmit power (without power reduction) for all radios. GradPC still vields much better performance than Default, due to higher spatial reuse factor. Moreover, Default is even worse than both N-base and BICONN.

Fig. 6. Performance comparison of multi-hop traffic in a 50-node random network topology with 7 flows.

Combining all the previous results from both grid and random network topologies, we demonstrate that multihop system performance cannot be determined by power parameter or route length alone. Instead, factors such as power, channel, and routing strategy all co-dominate the system performance of multi-hop flows. By seeking tradeoff between those factors, our proposed GradPC framework helps open up more system capacity for multi-hop communications.

TABLE II

HOP COUNT STATISTICS IN A 50-NODE RANDOM NETWORK TOPOLOGY

	GradPC	BICONN	N-base	Default
Total # hops	21	30	26	21
Avg. # hops	3	4.285	3.714	3

VI. CONCLUSION AND FUTURE WORK

In this paper, we did a pilot study on the interaction of two physical parameters: power and channel, with the goal of further expanding the system throughput of multi-hop traffic in a wireless ad hoc network. We proposed GradPC and its accompanying route and channel selection protocols. In the current proposal, we adopted the N-base protocol as our power control mechanism to provide the power gradations over radios. However, one may customize other existing power control strategies in place of the N-base protocol. In addition, though the cost of wireless cards has become quite affordable, in some cases it is difficult to install multiple radios at a computing device, due to size consideration or hardware support availability. Thus, how to utilize multiple channels based on the GradPC concept by practically using a single radio may be worth future investigation. This becomes challenging because, in this case, we

should carefully deal with both the switching issues and multi-channel hidden-terminal problem, inevitably at the cost of significant control signaling overhead.

References

- A. Akella, G. Judd, S. Seshan, and P. Steenkiste. Self Manage-ment in Chaotic Wireless Deployments. In Proc. ACM Mobi-[1]Com, 2005. D. M. Blough, M. Leoncini, G. Resta, and P. Santi. Topology
- [2] Control with Better Radio Models: Implications for Energy and Multi-hop Interference. In *Proc. ACM MSWiM*, 2005.
- [3] D. M. Blough, M. Leoncini, G. Resta, and P. Santi. The k-Neighbors Approach to Interference Bounded and Symmetric Topology Control in Ad Hoc Networks. *IEEE Transactions on* Mobile Computing, 5(9):1267-1282, 2006.
- [4] B. Bollobás. Random Graphs. Academic Press, Orlando, FL,
- M. Burkhart, P. Rickenbach, R. Wattenhofer, and A. Zollinger [5] In Proc. ACM Does Topology Control Reduce Interference?
- MobiHoc, 2004. X. Guo, S. Roy, and W. S. Conner. Spatial Reuse in Wireless [6] Ad-hoc Networks. In *Proc. IEEE VTC*, 2003. P. Gupta and P. R. Kumar. Critical Power for Asymptotic Con-
- [7]nectivity in Wireless Networks. Stochastic Analysis, Control, Optimization and Applications, 1998.
- [8] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactions on Information Theory, 46(2), March, 2000.
- [9] E. S. Jung and N. H. Vaidya. A Power Control MAC Protocol
- T.-S. Kim, H. Lim, and J. C. HOU. Improving Spatial Reuse through Tuning Transmit Power, Carrier Sense Threshold, and Data Rate in Multihop Wireless Networks. In *Proc. ACM Mo*-[10]biCom, September 2006.
- [11] P. Kyasanur and N. H. Vaidya. Routing and Interface Assignment in Multi-channel Multi-interface Wireless Networks. In *Proc. IEEE WCNC*, March 2005. J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Ca-
- [12]pacity of Ad Hoc Wireless Networks. In Proc. ACM MobiCom, July 2001
- N. Li and J. C. Hou. Topology Control in Heterogeneous Wireless Networks: Problems and Solutions. In *Proc. IEEE INFO*-[13]COM, 2004.
- [14]T.-Y. Lin and J. C. Hou. Interplay of Spatial Reuse and SINRdetermined Data Rates in CSMA/CA-based, Multi-hop, Multi-rate Wireless Networks. In *Proc. IEEE INFOCOM*, 2007. J. P. Monks, V. Bharghavan, and W. W. Hwu. A Power Con-
- [15]trolled Multiple Access Protocol for Wireless Packet Networks. In Proc. IEEE INFOCOM, 2001.
- [16] A. Muqattash and M. Krunz. Power Controlled Dual Channel (PCDC) Medium Access Protocol for Wireless Ad Hoc Net-works. In *Proc. IEEE INFOCOM*, 2003.
- A. Muqattash and M. Krunz. A Single-channel Solution for [17]Transmission Power Control in Wireless Ad Hoc Networks. In Proc. ACM MobiHoc, May 2004.
- [18]R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop Wireless Networks using Transmit Power Adjustment. In *Proc. IEEE INFOCOM*, 2000.
- [19] P. Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. ACM Computing Surveys (CSUR), 37(2):164-194, June, 2005.
- Y.-C. Tseng, S.-L. Wu, C.-Y. Lin, and J.-P. Sheu. A Multi-channel MAC Protocol with Power Control for Multi-hop Mo-bile Ad Hoc Networks. In *Proc. IEEE Int'l Conference on Dis-tributed Computing Systems (ICDCS)*, pages 419–424, 2001. [20]
- F. Xue and P. R. Kumar. The Number of Neighbors Needed for [21]Connectivity of Wireless Networks. Wireless Networks, 10:169-X. Yang and N. Vaidya. On Physical Carrier Sensing in Wireless
- [22]Ad Hoc Networks. In Proc. IEEE INFOCOM, April 2006.